Imidazol-4-one-5-propionic acid

Last updated
Imidazol-4-one-5-propionic acid
Imidazol-4-one-5-propionic acid.png
Names
IUPAC name
3-(5-Oxo-1,4-dihydroimidazol-4-yl)propanoic acid
Identifiers
3D model (JSmol)
ChemSpider
MeSH Imidazol-4-one-5-propionic+acid
PubChem CID
  • InChI=1S/C6H8N2O3/c9-5(10)2-1-4-6(11)8-3-7-4/h3-4H,1-2H2,(H,9,10)(H,7,8,11) X mark.svgN
    Key: HEXMLHKQVUFYME-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C6H8N2O3/c9-5(10)2-1-4-6(11)8-3-7-4/h3-4H,1-2H2,(H,9,10)(H,7,8,11)
    Key: HEXMLHKQVUFYME-UHFFFAOYAX
  • O=C1N\C=N/C1CCC(=O)O
Properties
C6H8N2O3
Molar mass 156.139
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Imidazol-4-one-5-propionic acid is an intermediate in the metabolism of histidine. It is a colorless compound that is sensitive to light in air. The compound features an imidazolone ring. [1]

Contents

Occurrence

It arises via the action of urocanase on urocanic acid. Hydrolysis of the heterocycle to the glutamic acid derivative is catalyzed by imidazolonepropionate hydrolase.

Microbial production of imidazol-4-one-5-propionic acid in the human gut has been shown to affect insulin signaling, which is relevant to type II diabetes. [2]

See also

Related Research Articles

Metabolism Set of life-sustaining chemical transformations within living cells of organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main purposes of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism.

Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to the hormone insulin.

Butyric acid Carboxylic acid with chemical formula CH3CH2CH2CO2H

Butyric acid (from Ancient Greek: βούτῡρον, meaning "butter"), also known under the systematic name butanoic acid, is a straight-chain alkyl carboxylic acid with the chemical formula CH3CH2CH2CO2H. It is an oily, colorless liquid with an unpleasant odor. Isobutyric acid (2-methylpropanoic acid) is an isomer. Salts and esters of butyric acid are known as butyrates or butanoates. The acid does not occur widely in nature, but its esters are widespread. It is a common industrial chemical and an important component in the mammalian gut.

Propionic acid Carboxylic acid with chemical formula CH3CH2CO2H

Propionic acid (, from the Greek words protos, meaning "first", and pion, meaning "fat"; also known as propanoic acid) is a naturally occurring carboxylic acid with chemical formula CH3CH2CO2H. It is a liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH3CH2CO2 as well as the salts and esters of propionic acid are known as propionates or propanoates.

Dehydroalanine Chemical compound

Dehydroalanine is a dehydroamino acid. It does not exist in its free form, but it occurs naturally as a residue found in peptides of microbial origin. As an amino acid residue, it is unusual because it has an unsaturated backbone.

Insulin-like growth factor 1 Protein-coding gene in the species Homo sapiens

Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults.

Inositol Carbocyclic sugar

Inositol, or more precisely myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation. It is a sugar alcohol with half the sweetness of sucrose. It is made naturally in humans from glucose. A human kidney makes about two grams per day. Other tissues synthesize it too, and the highest concentration is in the brain, where it plays an important role by making other neurotransmitters and some steroid hormones bind to their receptors. Inositol is promoted as a dietary supplement in the management of polycystic ovary syndrome (PCOS). However, there is only evidence of very low quality for its efficacy in increasing fertility in women with PCOS.

Ceramide Family of waxy lipid molecules

Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

Gut microbiota Community of microorganisms in the gut

Gutmicrobiota are the microorganisms, including bacteria and archaea, that live in the digestive tracts of vertebrates including humans, and of insects. Alternative terms include gutflora and gutmicrobiome. The gastrointestinal metagenome is the aggregate of all the genomes of gut microbiota. In the human, the gut is the main location of human microbiota. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut-brain axis.

Glucose transporter type 4 (GLUT4), also known as solute carrier family 2, facilitated glucose transporter member 4, is a protein encoded, in humans, by the SLC2A4 gene. GLUT4 is the insulin-regulated glucose transporter found primarily in adipose tissues and striated muscle. The first evidence for this distinct glucose transport protein was provided by David James in 1988. The gene that encodes GLUT4 was cloned and mapped in 1989.

Lipid signaling

Lipid signaling, broadly defined, refers to any biological signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

Urocanic acid Chemical compound

Urocanic acid is an intermediate in the catabolism of L-histidine.

Formiminoglutamic acid Chemical compound

Formiminoglutamic acid is an intermediate in the catabolism of L-histidine to L-glutamic acid. It thus is also a biomarker for intracellular levels of folate. The FIGLU test is used to identify vitamin B₁₂ deficiency, folate deficiency, and liver failure or liver disease. It is elevated with folate trapping, where it is accompanied by decreased methylmalonic acid, increased folate and a decrease in homocysteine.

Peroxisome proliferator-activated receptor gamma Protein-coding gene in the species Homo sapiens

Peroxisome proliferator- activated receptor gamma, also known as the glitazone reverse insulin resistance receptor, or NR1C3 is a type II nuclear receptor that in humans is encoded by the PPARG gene.

Phenylalanine ammonia-lyase

Phenylalanine ammonia lyase is an enzyme that catalyzes a reaction converting L-phenylalanine to ammonia and trans-cinnamic acid. Phenylalanine ammonia lyase (PAL) is the first and committed step in the phenyl propanoid pathway and is therefore involved in the biosynthesis of the polyphenol compounds such as flavonoids, phenylpropanoids, and lignin in plants. Phenylalanine ammonia lyase is found widely in plants, as well as some bacteria, yeast, and fungi, with isoenzymes existing within many different species. It has a molecular mass in the range of 270–330 kDa. The activity of PAL is induced dramatically in response to various stimuli such as tissue wounding, pathogenic attack, light, low temperatures, and hormones. PAL has recently been studied for possible therapeutic benefits in humans afflicted with phenylketonuria. It has also been used in the generation of L-phenylalanine as precursor of the sweetener aspartame.

Free fatty acid receptor 1

Free fatty acid receptor 1 (FFA1), also known as GPR40, is a class A G-protein coupled receptor that in humans is encoded by the FFAR1 gene. It is strongly expressed in the cells of the pancreas and to a lesser extent in the brain. This membrane protein binds free fatty acids, acting as a nutrient sensor for regulating energy homeostasis.

Indole Organic compound with an intense fecal odor

Indole is an aromatic heterocyclic organic compound with formula C8H7N. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence. The amino acid tryptophan is an indole derivative and the precursor of the neurotransmitter serotonin.

Gut–brain axis

The gut–brain axis is the two-way biochemical signaling that takes place between the gastrointestinal tract and the central nervous system (CNS). The term "gut–brain axis" is occasionally used to refer to the role of the gut microbiota in the interplay as well. The "microbiota–gut–brainaxis" explicitly includes the role of gut microbiota in the biochemical signaling events that take place between the GI tract and the CNS. Broadly defined, the gut–brain axis includes the central nervous system, neuroendocrine system, neuroimmune systems, the hypothalamic–pituitary–adrenal axis, sympathetic and parasympathetic arms of the autonomic nervous system, the enteric nervous system, vagus nerve, and the gut microbiota.

Imidazolidinone

Imidazolidinones or imidazolinones are a class of 5-membered ring heterocycles structurally related to imidazole. Imidazolidinones feature a saturated C3N2 backbones, except for the presence of a urea or amide functional group in the 2 or 4 positions.

Imidazolone

Imidazolones are a family of heterocyclic compounds, the parents of which have the formula OC(NH)2(CH)2. Two isomers are possible, depending on the location of the carbonyl (CO) group. The NH groups are nonadjacent. A common route to imidazol-2-ones involves condensation of ureas and acyloins. Some are of interest in the pharmaceuticals. 4-Imidazolones arise from the condensation of amidines with 1,2-dicarbonyls such as glyoxal.

References

  1. Hassall, H.; Greenberg, D. M. (1971). "Preparation and properties of 4(5)-imidazolone-5(4)-propionic acid". Methods Enzymol. 17(Pt. B): 89–91. doi:10.1016/0076-6879(71)17014-0.
  2. Koh, Ara; Molinaro, Antonio; Ståhlman, Marcus; Khan, Muhammad Tanweer; Schmidt, Caroline; Mannerås-Holm, Louise; Wu, Hao; Carreras, Alba; Jeong, Heeyoon; Olofsson, Louise E.; Bergh, Per-Olof; Gerdes, Victor; Hartstra, Annick; De Brauw, Maurits; Perkins, Rosie; Nieuwdorp, Max; Bergström, Göran; Bäckhed, Fredrik (2018). "Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1". Cell. 175 (4): 947–961.e17. doi:10.1016/j.cell.2018.09.055. PMID   30401435. S2CID   53229780.