3-Hydroxykynurenine

Last updated
3-Hydroxykynurenine
3-hydroxykynurenine.png
3-Hydroxy-L-kynurenine-zwitterion-3D-balls.png
Names
IUPAC name
2-Amino-4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
KEGG
MeSH 3-hydroxykynurenine
PubChem CID
UNII
  • InChI=1S/C10H12N2O4/c11-6(10(15)16)4-8(14)5-2-1-3-7(13)9(5)12/h1-3,6,13H,4,11-12H2,(H,15,16) Yes check.svgY
    Key: VCKPUUFAIGNJHC-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H12N2O4/c11-6(10(15)16)4-8(14)5-2-1-3-7(13)9(5)12/h1-3,6,13H,4,11-12H2,(H,15,16)
    Key: VCKPUUFAIGNJHC-UHFFFAOYAF
  • O=C(O)C(N)CC(=O)c1cccc(O)c1N
Properties
C10H12N2O4
Molar mass 224.21 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

3-Hydroxykynurenine is a metabolite of tryptophan, which filters UV light in the human lens. [1] It is one of two pigments identified as responsible for the goldenrod crab spider's (Misumena vatia) yellow coloration.

The Kynurenine pathway, which connects quinolinic acid to tryptophan. The pathway is named for the first intermediate, kynurenine, which is a precursor to kynurenic acid and 3-hydroxykynurenine. Kynurenine pathway wordless.svg
The Kynurenine pathway, which connects quinolinic acid to tryptophan. The pathway is named for the first intermediate, kynurenine, which is a precursor to kynurenic acid and 3-hydroxykynurenine.

Related Research Articles

<span class="mw-page-title-main">Tryptophan</span> Chemical compound

Tryptophan is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3. It is encoded by the codon UGG.

<span class="mw-page-title-main">Cataract</span> Clouding of the lens inside the eye causing poor vision

A cataract is a cloudy area in the lens of the eye that leads to a decrease in vision. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colours, blurry or double vision, halos around light, trouble with bright lights, and difficulty seeing at night. This may result in trouble driving, reading, or recognizing faces. Poor vision caused by cataracts may also result in an increased risk of falling and depression. Cataracts cause 51% of all cases of blindness and 33% of visual impairment worldwide.

<span class="mw-page-title-main">Lens (vertebrate anatomy)</span> Eye structure

The lens, or crystalline lens, is a transparent biconvex structure in most land vertebrate eyes. Along with the cornea, aqueous and vitreous humours it refracts light, focusing it onto the retina. In many land animals the shape of the lens can be altered, effectively changing the focal length of the eye, enabling them to focus on objects at various distances. This adjustment of the lens is known as accommodation. In many fully aquatic vertebrates such as fish other methods of accommodation are used such as changing the lens's position relative to the retina rather than changing lens shape. Accommodation is analogous to the focusing of a photographic camera via changing its lenses. In land vertebrates the lens is flatter on its anterior side than on its posterior side, while in fish the lens is often close to spherical.

<span class="mw-page-title-main">Dactinomycin</span> Chemical compound

Dactinomycin, also known as actinomycin D, is a chemotherapy medication used to treat a number of types of cancer. This includes Wilms tumor, rhabdomyosarcoma, Ewing's sarcoma, trophoblastic neoplasm, testicular cancer, and certain types of ovarian cancer. It is given by injection into a vein.

<span class="mw-page-title-main">Kynureninase</span>

Kynureninase or L-Kynurenine hydrolase (KYNU) is a PLP dependent enzyme that catalyses the cleavage of kynurenine (Kyn) into anthranilic acid (Ant). It can also act on 3-hydroxykynurenine and some other (3-arylcarbonyl)-alanines. Humans express one kynureninase enzyme that is encoded by the KYNU gene located on chromosome 2.

<span class="mw-page-title-main">Kynurenine</span> Chemical compound

l-Kynurenine is a metabolite of the amino acid l-tryptophan used in the production of niacin.

Ommochrome refers to several biological pigments that occur in the eyes of crustaceans and insects. The eye color is determined by the ommochromes. Ommochromes are also found in the chromatophores of cephalopods, and in spiders.

<span class="mw-page-title-main">Kynurenic acid</span> Chemical compound

Kynurenic acid is a product of the normal metabolism of amino acid L-tryptophan. It has been shown that kynurenic acid possesses neuroactive activity. It acts as an antiexcitotoxic and anticonvulsant, most likely through acting as an antagonist at excitatory amino acid receptors. Because of this activity, it may influence important neurophysiological and neuropathological processes. As a result, kynurenic acid has been considered for use in therapy in certain neurobiological disorders. Conversely, increased levels of kynurenic acid have also been linked to certain pathological conditions.

<span class="mw-page-title-main">Indoleamine 2,3-dioxygenase</span> Mammalian protein found in Homo sapiens

Indoleamine-pyrrole 2,3-dioxygenase (IDO or INDO EC 1.13.11.52) is a heme-containing enzyme physiologically expressed in a number of tissues and cells, such as the small intestine, lungs, female genital tract or placenta. In humans is encoded by the IDO1 gene. IDO is involved in tryptophan metabolism. It is one of three enzymes that catalyze the first and rate-limiting step in the kynurenine pathway, the O2-dependent oxidation of L-tryptophan to N-formylkynurenine, the others being indolamine-2,3-dioxygenase 2 (IDO2) and tryptophan 2,3-dioxygenase (TDO). IDO is an important part of the immune system and plays a part in natural defense against various pathogens. It is produced by the cells in response to inflammation and has an immunosuppressive function because of its ability to limit T-cell function and engage mechanisms of immune tolerance. Emerging evidence suggests that IDO becomes activated during tumor development, helping malignant cells escape eradication by the immune system. Expression of IDO has been described in a number of types of cancer, such as acute myeloid leukemia, ovarian cancer or colorectal cancer. IDO is part of the malignant transformation process and plays a key role in suppressing the anti-tumor immune response in the body, so inhibiting it could increase the effect of chemotherapy as well as other immunotherapeutic protocols. Furthermore, there is data implicating a role for IDO1 in the modulation of vascular tone in conditions of inflammation via a novel pathway involving singlet oxygen.

<span class="mw-page-title-main">Picolinic acid</span> Pyridine-2-carboxylic acid; bidentate chelating agent

Picolinic acid is an organic compound with the formula C
5
H
4
NCOOH
). It is a derivative of pyridine with a carboxylic acid (COOH) substituent at the 2-position. It is an isomer of nicotinic acid and isonicotinic acid, which have the carboxyl side chain at the 3- and 4-positions, respectively. It is a white solid that is soluble in water.

<span class="mw-page-title-main">Kynurenine 3-monooxygenase</span> Enzyme

In enzymology, a kynurenine 3-monooxygenase (EC 1.14.13.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a 3-hydroxyanthranilate oxidase (EC 1.10.3.5) (also called 3-HAO) is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">Tryptophan 2,3-dioxygenase</span> Mammalian protein found in Homo sapiens

In enzymology, tryptophan 2,3-dioxygenase (EC 1.13.11.11) is a heme enzyme that catalyzes the oxidation of L-tryptophan (L-Trp) to N-formyl-L-kynurenine, as the first and rate-limiting step of the kynurenine pathway.

In enzymology, an arylformamidase (EC 3.5.1.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Kynurenine—oxoglutarate transaminase</span>

In enzymology, a kynurenine-oxoglutarate transaminase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Quinolinic acid</span> Dicarboxylic acid with pyridine backbone

Quinolinic acid, also known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a pyridine backbone. It is a colorless solid. It is the biosynthetic precursor to niacin.

<span class="mw-page-title-main">KMO (gene)</span> Protein-coding gene in the species Homo sapiens

Kynurenine 3-monooxygenase is an enzyme that in humans is encoded by the KMO gene.

<span class="mw-page-title-main">Hypertryptophanemia</span> Medical condition

Hypertryptophanemia is a rare autosomal recessive metabolic disorder that results in a massive buildup of the amino acid tryptophan in the blood, with associated symptoms and tryptophanuria.

<span class="mw-page-title-main">Kynurenine pathway</span> Metabolic pathway that produces the NAD coenzyme

The kynurenine pathway is a metabolic pathway leading to the production of nicotinamide adenine dinucleotide (NAD+). Metabolites involved in the kynurenine pathway include tryptophan, kynurenine, kynurenic acid, xanthurenic acid, quinolinic acid, and 3-hydroxykynurenine. The kynurenine pathway is responsible for total catabolization of tryptophan about 95%. Disruption in the pathway is associated with certain genetic and psychiatric disorders.

<span class="mw-page-title-main">4-Chlorokynurenine</span> Chemical compound

L-4-Chlorokynurenine is an orally active small molecule prodrug of 7-chlorokynurenic acid, a NMDA receptor antagonist. It was investigated as a potential rapid-acting antidepressant.

References

  1. Malina, HZ; Martin, XD (1995). "Deamination of 3-hydroxykynurenine in bovine lenses: a possible mechanism of cataract formation in general". Graefes Arch Clin Exp Ophthalmol. 233 (1): 38–44. doi:10.1007/bf00177784. PMID   7721122. S2CID   25414197.
  2. Schwarcz, Robert; John P. Bruno; Paul J. Muchowski; Hui-Qiu Wu (July 2012). "Kynurenines in the Mammalian Brain: When Physiology Meets Pathology". Nature Reviews Neuroscience. 13 (7): 465–477. doi:10.1038/nrn3257. PMC   3681811 . PMID   22678511.

See also