Corrosion inhibitor

Last updated

In chemistry, a corrosion inhibitor or anti-corrosive is a chemical compound that, when added to a liquid or gas, decreases the corrosion rate of a material, typically a metal or an alloy, that comes into contact with the fluid. [1] The effectiveness of a corrosion inhibitor depends on fluid composition, quantity of water, and flow regime. Corrosion inhibitors are common in industry, and also found in over-the-counter products, typically in spray form in combination with a lubricant and sometimes a penetrating oil. They may be added to water to prevent leaching of lead or copper from pipes. [2]

Contents

A common mechanism for inhibiting corrosion involves formation of a coating, often a passivation layer, which prevents access of the corrosive substance to the metal. Permanent treatments such as chrome plating are not generally considered inhibitors, however: corrosion inhibitors are additives to the fluids that surround the metal or related object.

Types

Benzotriazole inhibits corrosion of copper by forming an inert layer of this polymer on the metal's surface CuBTApolymer.png
Benzotriazole inhibits corrosion of copper by forming an inert layer of this polymer on the metal's surface

The nature of the corrosive inhibitor depends on (i) the material being protected, which are most commonly metal objects, and (ii) on the corrosive agent(s) to be neutralized. The corrosive agents are generally oxygen, hydrogen sulfide, and carbon dioxide. Oxygen is generally removed by reductive inhibitors such as amines and hydrazines:

O2 + N2H4 → 2 H2O + N2

In this example, hydrazine converts oxygen, a common corrosive agent, to water, which is generally benign. Related inhibitors of oxygen corrosion are hexamine, phenylenediamine, and dimethylethanolamine, and their derivatives. Antioxidants such as sulfite and ascorbic acid are sometimes used. Some corrosion inhibitors form a passivating coating on the surface by chemisorption. Benzotriazole is one such species used to protect copper. For lubrication, zinc dithiophosphates are common - they deposit sulfide on surfaces.

The suitability of any given chemical for a task in hand depends on many factors, including their operating temperature. [3]

Illustrative applications

Tap water

Orthophosphates may be added in tap water treatment systems to prevent leaching of lead and copper from water pipes and reduce the ion content in tap water to safer, legal levels. [2] Polyphosphates can be used to control iron and manganese, which cause discoloration, but do not control lead and copper. The water industry commonly uses a blended-phosphates formulation to deal with both issues. [5] Phosphates convert any leached ions into a layer of scale that acts to separate the metal piping from the water. [6]

Corrosion of drinking water pipes can be influenced by a number of factors such as the pH, buffering capacity, and hardness. [7] Accordingly, other methods control include directly adjusting the pH, adding silicates as an alternative corrosion inhibitor, or adding bicarbonates for buffer. [2]

Phosphate-type inhibitors may cause eutrophication issues downstream or directly encourage algal growth in uncovered, treated water reservoirs. As a result, local water systems may elect to use alternative methods. [8]

In areas with widespread lead and copper piping systems, corrosion control using inhibitors and monitoring techniques is central to water safety. Figures such as the chloride-to-sulfate mass ratio (CSMR) can be used to estimate the risk of corrosion at galvanic connections (i.e. desimilar pipe/solder connections, such as a lead-to-iron transition). The 2014 Flint water crisis was caused by a combination of source water change and a lack of corrosion control. The new, higher-CSMR water not only dissolved lead and iron from the pipes themselves, but also broke up previous layers of lead-containing rusty scale in pipes, allowing them to enter the water supply. [6]

Fuels industry

Corrosion inhibitors are commonly added to coolants, fuels, hydraulic fluids, boiler water, engine oil, and many other fluids used in industry. For fuels, various corrosion inhibitors can be used. Some components include zinc dithiophosphates. [9]

See also

Useful websites

Related Research Articles

<span class="mw-page-title-main">Galvanization</span> Process of coating steel or iron with zinc to prevent rusting

Galvanization or galvanizing is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are coated by submerging them in a bath of hot, molten zinc.

<span class="mw-page-title-main">Rust</span> Type of iron oxide

Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

<span class="mw-page-title-main">Cathodic protection</span> Corrosion prevention technique

Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.

Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. Sulfide also refers to large families of inorganic and organic compounds, e.g. lead sulfide and dimethyl sulfide. Hydrogen sulfide (H2S) and bisulfide (SH) are the conjugate acids of sulfide.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. However, all common antifreeze additives also have lower heat capacities than water, and do reduce water's ability to act as a coolant when added to it.

<span class="mw-page-title-main">Diethanolamine</span> Chemical compound

Diethanolamine, often abbreviated as DEA or DEOA, is an organic compound with the formula HN(CH2CH2OH)2. Pure diethanolamine is a white solid at room temperature, but its tendencies to absorb water and to supercool meaning that it is often encountered as a colorless, viscous liquid. Diethanolamine is polyfunctional, being a secondary amine and a diol. Like other organic amines, diethanolamine acts as a weak base. Reflecting the hydrophilic character of the secondary amine and hydroxyl groups, DEA is soluble in water. Amides prepared from DEA are often also hydrophilic. In 2013, the chemical was classified by the International Agency for Research on Cancer as "possibly carcinogenic to humans" (Group 2B).

AW additives, or antiwear additives, are additives for lubricants to prevent metal-to-metal contact between parts of gears.

<span class="mw-page-title-main">Extreme pressure additive</span>

Extreme pressure additives, or EP additives, are additives for lubricants with a role to decrease wear of the parts of the gears exposed to very high pressures. They are also added to cutting fluids for machining of metals.

<span class="mw-page-title-main">Zinc dithiophosphate</span> Lubricant additive

Zinc dialkyldithiophosphates are a family of coordination compounds developed in the 1940s that feature zinc bound to the anion of a dialkyldithiophosphoric salt. These uncharged compounds are not salts. They are soluble in nonpolar solvents, and the longer-chain derivatives easily dissolve in mineral and synthetic oils used as lubricants. They come under CAS number 68649-42-3. In aftermarket oil additives, the percentage of ZDDP ranges approximately between 2 and 15%. Zinc dithiophosphates have many names, including ZDDP, ZnDTP, and ZDP.

<span class="mw-page-title-main">Stabilizer (chemistry)</span> Chemical used to prevent degradation

In industrial chemistry, a stabilizer or stabiliser is a chemical that is used to prevent degradation.

<span class="mw-page-title-main">Metal deactivator</span>

Metal deactivators, or metal deactivating agents (MDA) are fuel additives and oil additives used to stabilize fluids by deactivating metal ions, mostly introduced by the action of naturally occurring acids in the fuel and acids generated in lubricants by oxidative processes with the metallic parts of the systems. Fuels desulfurized by copper sweetening also contain a significant trace amounts of copper.

Dinonylnaphthylsulfonic acid (DINNSA) is an organic chemical, an aryl sulfonic acid. Its melting point is 259.5 °C and its boiling point is 600.4 °C. It has very low water solubility. It is a moderate skin irritant and a strong eye irritant. It has low volatility and vapor pressure and is stable above 100 °C.

Oil additives are chemical compounds that improve the lubricant performance of base oil. The manufacturer of many different oils can utilize the same base stock for each formulation and can choose different additives for each specific application. Additives comprise up to 5% by weight of some oils.

Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace. It is therefore thermodynamically inevitable that these metals when exposed to various environments would revert to their state found in nature. Corrosion and corrosion engineering thus involves a study of chemical kinetics, thermodynamics, electrochemistry and materials science.

A volatile corrosion inhibitor (VCI) is a material that protects metals from corrosion. Corrosion inhibitors are chemical compounds that can decrease the corrosion rate of a material, typically a metal or an alloy. NACE International Standard TM0208 defines volatile corrosion inhibitor (VCI) as a chemical substance that acts to reduce corrosion by a combination of volatilization from a VCI material, vapor transport in the atmosphere of an enclosed environment, and condensation onto surface in the space, including absorption, dissolution, and hydrophobic effects on metal surfaces, where the rate of corrosion of metal surfaces is thereby inhibited. They also called vapor-phase inhibitors, vapor-phase corrosion inhibitors, and vapor-transported corrosion inhibitors.

Corrosion inhibitors for the petroleum industry are substances used in the oil industry to protect equipment and pipelines against corrosion. Corrosion is a daily problem in the oil industry due to the presence in crude oil of water contaminated with salts, gases and other corrosive contaminants in the production process. Corrosion inhibitors can be classified according to their chemical composition as either organic inhibitors or inorganic inhibitors. They can also be classified by the way they act as anodic or cathodic inhibitors. Cathodic inhibitors act as catalysts to slow down corrosion, while anodic inhibitors protect metal surfaces by acting as physical barriers.

Corrosion inhibitors are substances used in the oil industry to protect equipment and pipes against corrosion. Corrosion is a common problem in the oil industry due to the presence of water, gases, and other corrosive contaminants in the production environment.

References

  1. Hubert Gräfen, Elmar-Manfred Horn, Hartmut Schlecker, Helmut Schindler "Corrosion" Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim, 2002. doi : 10.1002/14356007.b01_08
  2. 1 2 3 "Optimal Corrosion Control Treatment Evaluation Technical Recommendations for Primacy Agencies and Public Water Systems" (PDF). United States Environmental Protection Agency. 2019.
  3. Ma, I. A. Wonnie; Ammar, Sh.; Kumar, Sachin S. A.; Ramesh, K.; Ramesh, S. (2022-01-01). "A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies". Journal of Coatings Technology and Research . 19 (1): 241–268. doi:10.1007/s11998-021-00547-0. ISSN   1935-3804. S2CID   244716439.
  4. M. Finšgarand and I. Milošev "Inhibition of copper corrosion by 1,2,3-benzotriazole: A review" Corrosion Science 2010, Volume 52, Pages 2737-2749 doi : 10.1016/j.corsci.2010.05.002
  5. "Why do water systems add phosphate to drinking water? What are the health effects of drinking water containing phosphates?". EPA.gov.
  6. 1 2 Pieper, Kelsey J.; Tang, Min; Edwards, Marc A. (21 February 2017). "Flint Water Crisis Caused By Interrupted Corrosion Control: Investigating "Ground Zero" Home". Environmental Science & Technology. 51 (4): 2007–2014. Bibcode:2017EnST...51.2007P. doi: 10.1021/acs.est.6b04034 . PMID   28145123. S2CID   26186807.
  7. "Drinking Water Pipe Systems | Engineering | Community Water Fluoridation | Division of Oral Health | CDC". www.cdc.gov. 5 November 2018.
  8. The Cadmus Group, Inc. (July 22, 2004). "Investigation of Potential Environmental Impacts due to the use of Phosphate-based Corrosion Inhibitors in the District of Columbia" (PDF). archive.epa.gov.
  9. Octel-Starreon Refinery Fuel Additives Corrosion Inhibitors for hydrocarbon fuels - corrosion inhibitor and corrosion protection to fuel distribution system