A volatile corrosion inhibitor (VCI) is a material that protects metals from corrosion. Corrosion inhibitors are chemical compounds that can decrease the corrosion rate of a material, typically a metal or an alloy. NACE International Standard TM0208 defines volatile corrosion inhibitor (VCI) as a chemical substance that acts to reduce corrosion by a combination of volatilization from a VCI material, vapor transport in the atmosphere of an enclosed environment, and condensation onto surface in the space, including absorption, dissolution, and hydrophobic effects on metal surfaces, where the rate of corrosion of metal surfaces is thereby inhibited. They are also called vapor-phase inhibitors, vapor-phase corrosion inhibitors, and vapor-transported corrosion inhibitors.
VCIs come in various formulations that are dependent on the type of system they will be used in; for example, films, oils, coatings, cleaners, etc. There are also variety of formulations that provide protection in ferrous, nonferrous, or multi-metal applications. Other variables include the amount of vapor phase compared to contact phase inhibitors. [1] Because they are volatile at ambient temperature, VCI compounds can reach inaccessible crevices in metallic structures. [2]
V.VCI is also called Vacuum VCI meaning they have special properties of performance in vacuum as well as corrosion protection properties. [ citation needed ]
The first widescale use of VCIs can be traced to Shell's patent for dicyclohexylammonium nitrite (DICHAN), which was eventually commercialized as VPI 260. [3] DICHAN was used extensively by the US military to protect a wide variety of metallic components from corrosion via various delivery systems, VCI powder, VCI paper, VCI solution, VCI slushing compound, etc.
Safety and health concerns as well as inherent limitations has led to the abandonment of DICHAN as a VCI. [4] At present, commercial VCI compounds are typically salts of moderately strong bases and weak volatile acids. The typical bases are amines and the acids are carbonic, nitrous and carboxylic. [5]
For steel, the first step will be the volatilization of the inhibitor into the airspace. This may entail simple evolution of the molecule or the chemical may dissociate first and then volatilize. [6] The molecules will then diffuse through the enclosed airspace until some of the molecules reach the metallic surface to be protected. There are two likely paths once the molecules reach the metallic surface. First the molecule may adsorb onto the metal surface thereby forming a barrier to aggressive ions and displacing any condensed water. [6] [7]
The second path involves the condensed water layer that has been shown to exist on the metallic surface. [8] The VCI molecules will dissolve into the condensed water layer, raising the pH. An alkaline pH has been shown to have a beneficial effect on the corrosion resistance for steel. [6]
The mechanism for copper begins the same as for steel, evolution of the inhibitor. Once at the copper surface however, the inhibitor will form a copper benzotriazole complex which is protective. [9]
Vapor pressure is a critical parameter in VCI effectiveness. The most favorable range of pressure is 10−3 to 10−2 Pa at room temperature. Insufficient pressure leads to the slow establishment of the protective layer; if the pressure is too high, VCI effectiveness is limited to a short time. [10] [11]
VCIs have been applied across a wide variety of application areas:
Packaging – One of the first widespread uses for VCIs was VCI paper which was used to wrap parts for transportation and/or storage. The technology then evolved with the development of VCI film, where the inhibitor was incorporated into Polyethylene film. [8] This offered the advantage that parts could be stored in the VCI film without any rust-preventative (RP) oil, which would typically have to be removed before part was placed into service. In places where the VCI film is in direct contact with the metal, VCI molecules adsorb on the metal surfaces, creating an invisible molecular barrier against corrosive elements such as oxygen, moisture, and chlorides. As VCI molecules vaporize out of the film and diffuse throughout the package, they also form a protective molecular layer on metal surfaces not in direct contact with the film. When the packaging is removed, the VCI molecules simply vaporize and float away. [12] VCI films protect metals both through direct contact and vapor action. Large Equipment/Assets are wrapped in VCI heat shrinkable film for long term outdoor storage. The use of polymer films for thorough protection of electronic equipment during shipment or storage should take into account the prevention of electrostatic discharge (ESD), corrosion, and the disposal of the film after use. A main property that makes a polymer film a viable packaging material for electronic equipment is the film's ability to eliminate electrostatic discharge. The most recent property addition to VCI film is biodegradability. [12]
Coatings - The use of VCIs as alternative corrosion inhibitor technologies in coating is not a new concept. In the last few years, however, with growing environmental pressure to reduce the use of traditional inhibitors containing heavy metals, they have gained in popularity. Since VCI particles have a polar attraction to the metal substrate, this allows them to work in the coating without negatively impacting other components of the coating, such as defoamers, wetting agents, levelling agents, etc. VCIs are typically added to the formulation in very small amounts by weight of the overall formula. The particle size of the VCIs is very small in comparison to traditionally used inhibitors. This allows the VCIs to migrate into the smaller voids more effectively. Once the VCIs have adsorbed on the surface of the metal, they provide an effective barrier that is hydrophobic and prevents moisture from getting through to the metal surface. Consequently, this prevents the formation of a corrosion cell and renders the moisture ineffective. [13]
Emitter – VCI in the form of a capsule, foam, cup, etc., is placed within an electrical cabinet, junction box, etc., to provide corrosion protection to the various components inside the box. VCI emitters also provide best protection against H2S, SO2, ammonia & humidity, It is mostly use in electrical components because it does not affect electrical, surface or optical properties.
Pipe casings – A mixture of VCI and a swellable gel is injected into the annular space between the pipe casing (the outer pipe) and the carrier pipe (the inner pipe) as to provide corrosion protection to the carrier pipe. This application has recently been of wider interest as it has been approved by PHMSA as a means to address a shorted casing in a CP protected pipeline. (PHMSA rules dictate that a shorted casing on a PHMSA regulated pipeline be repaired or treated). Details can also be found in NACE SP-200. [14]
Pipeline preservation (internal) - VCIs are seeing widespread application for the mitigation of corrosion of the internal surfaces of new and/or existing out-of-service pipelines. [9] Top-of-the-line TOL corrosion typically occurs in wet gas pipelines that have a stratified flow regime and poor thermal insulation. TOL corrosion is predominantly a problem of protection in the gas phase. [15] Tests showed that the best potential for providing corrosion protection for TOL came from azoles, certain acetylene alcohols, and a "green" volatile aldehyde. [16]
For new pipelines, the time period between hydrotesting and operations can be very unpredictable and may extend for months. Historical data has shown that significant corrosion issues can arise as a result of residual hydrotest water. [14] For a piggable pipeline, an aqueous solution of VCI is pushed down the pipeline between two pigs after completion of the hydrotest operation. This provides corrosion mitigation until the line is put into service. [14] For a non-piggable pipeline, the low sections where residual hydrotest water may collect after draining are identified and an aqueous VCI solution is added at nearby high points such that the inhibitor solution will flow into the low sections, thereby treating the residual water with inhibitor. [14]
For pipeline sections that are being idled, the low-lying sections are identified, and an inhibitor solution is added at nearby high points as to fill the low-lying section to a predetermined depth. [14]
Aboveground storage tanks (Soilside Bottom) - The bottoms of aboveground storage tanks are typically coated on the inside (product side) to prevent corrosion. The other side of the bottom, (soilside) is not coated and the unprotected steel rests directly on a foundation. There are various styles of foundations: a concrete ringwall with a sand bed and a liner, a hard pad, such as concrete or asphalt, a double bottom and finally simple soil. [14] VCIs are applied via various methods depending the tank foundation.
For tanks with a concrete ringwall, a sand bed and a liner, the VCI is typically installed as an aqueous solution. The solution is either injected at minimal pressure through the leak detection ports, (distribution of the solution through the sand is primarily via capillary action) or through a preinstalled distribution system of perforated pipes. [17] The tank can be in or out of service.
Various options are available for a tank on a hard pad depending on whether the tank is in or out of service. For a tank that is in service, a ring of perforated pipes is installed at the edge of the chime sealed via a membrane that creates an enclosed space between the tank chime and the hard pad foundation. The VCI is supplied as a powder in mesh sleeves that are threaded into the perforated pipes. Upon depletion of the VCI, the mesh sleeves are removed, and new sleeves installed. [18] For a tank that is out of service with the floor removed, grooves are cut into the hard pad. A channel is also cut from the end of the groove to extend beyond the tank chime. Perforated pipe with a mesh cover is laid at the bottom of the cut grooves. The groove is then filled with sand. The tank bottom is then installed as normal. The VCI is supplied as a powder in mesh sleeves that are installed into the perforated pipe. The ends of the perforated pipes are sealed closed. Upon depletion of the VCI, the mesh sleeves are removed, and new sleeves installed. [19] For a tank that is out of service without the floor removed, the typical approach is to inject the VCI as an aqueous solution through ports that have been installed through the floor which often are the helium ports that were used to verify the tank floor integrity. [18]
There are two typical geometries for double bottom tank. In the first, the space between the two floors has a liner and a sand bed and for the second, a liner and a concrete pad with radial slots. (This style of double bottom is often called an El Segundo double bottom). For a double bottom with a liner and sand bed, the VCI is supplied as an aqueous solution which is injected through the leak detection ports. For an El Segundo bottom that is in service, the VCI is again supplied as an aqueous solution that is injected through the leak detection ports. The ports are sealed closed and the solution is allowed to stand for a short period of time. The ports are then opened and the VCI solution is drained leaving a residual amount of the VCI solution within the space. This residual VCI provides the corrosion protection for the space. For an El Segundo bottom that is out of service, perforated pipes are installed into the grooves in the concrete that have leak detection ports. Mesh sleeves containing inhibitor powder is inserted into the perforated pipes and the leak detection ports are closed.
Aboveground storage tanks (Roofs) – The environment in the headspace of an aboveground storage tank can be very aggressive especially for tanks storing crude oil. The environment is aggressive as a result of the acidic species that are typically found in crude oil, (sour crude). Corrosion protection is supplied via a system of dispensers that have been attached to ports that have been installed on the tank roof. (Ports and shut-off valves are installed when the tank is out of service). Bottles containing the VCI are placed in the dispenser and the shut off valves are opened. The VCI has a high vapor pressure such that the inhibitor will saturate the airspace within the dispenser and then will diffuse through the open port into the storage tank headspace. [20] [21]
Oils - The most common use of VCIs in oils is for the protection of oil containing systems like an engine or hydraulics during intermittent use or during longer-term storage (mothballing). The VCI treated oil is typically added to the existing oil and the unit is run to fully circulate the treated oil throughout the system. The system is then shut off for storage. The VCI treated oil can also be fogged into void spaces within a system or enclosed space. [21]
Interior of large enclosed spaces – VCIs have been used to protect the interior of equipment such as tanks, vessels, boilers, piping, heat exchangers, etc., especially for voids and/or recessed areas of interior cavities during storage and/or transportation. The typical means are fogging/blowing the VCI powder into the interior space or applying the VCI powder in packet form. For smaller volumes, the packets are simply distributed within the space. For larger volumes, the packets are attached to leads that are then hung at the perimeter of the space. [22]
Water treatment – Aqueous VCI solutions have been used to flush/rinse pipelines, pumps, manifolds, enclosed pits, heat exchangers, etc. as preparation for mothballing/storage.
Specialty covers – VCI film covers have been used to protect flanges, valves, etc. in harsh environments such as chemical processing plants, offshore platforms, etc. [23]
Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.
A galvanic anode, or sacrificial anode, is the main component of a galvanic cathodic protection system used to protect buried or submerged metal structures from corrosion.
Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.
An underground storage tank (UST) is, according to United States federal regulations, a storage tank, including any underground piping connected to the tank, that has at least 10 percent of its volume underground.
Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.
A corrosion inhibitor or anti-corrosive is a chemical compound added to a liquid or gas to decrease the corrosion rate of a metal that comes into contact with the fluid. The effectiveness of a corrosion inhibitor depends on fluid composition and dynamics. Corrosion inhibitors are common in industry, and also found in over-the-counter products, typically in spray form in combination with a lubricant and sometimes a penetrating oil. They may be added to water to prevent leaching of lead or copper from pipes.
A deaerator is a device that is used for the removal of dissolved gases like oxygen from a liquid.
Magnetic flux leakage is a magnetic method of nondestructive testing to detect corrosion and pitting in steel structures, for instance: pipelines and storage tanks. The basic principle is that the magnetic field "leaks" from the steel at areas where there is corrosion or missing metal. To magnetize the steel, a powerful magnet is used. In an MFL tool, a magnetic detector is placed between the poles of the magnet to detect the leakage field. Analysts interpret the chart recording of the leakage field to identify damaged areas and to estimate the depth of metal loss.
An oil terminal is an industrial facility for the storage of oil, petroleum and petrochemical products, and from which these products are transported to end users or other storage facilities. An oil terminal typically has a variety of above or below ground tankage; facilities for inter-tank transfer; pumping facilities; loading gantries for filling road tankers or barges; ship loading/unloading equipment at marine terminals; and pipeline connections.
Soil vapor extraction (SVE) is a physical treatment process for in situ remediation of volatile contaminants in vadose zone (unsaturated) soils. SVE is based on mass transfer of contaminant from the solid (sorbed) and liquid phases into the gas phase, with subsequent collection of the gas phase contamination at extraction wells. Extracted contaminant mass in the gas phase is treated in aboveground systems. In essence, SVE is the vadose zone equivalent of the pump-and-treat technology for groundwater remediation. SVE is particularly amenable to contaminants with higher Henry’s Law constants, including various chlorinated solvents and hydrocarbons. SVE is a well-demonstrated, mature remediation technology and has been identified by the U.S. Environmental Protection Agency (EPA) as presumptive remedy.
Crevice corrosion refers to corrosion occurring in occluded spaces such as interstices in which a stagnant solution is trapped and not renewed. These spaces are generally called crevices. Examples of crevices are gaps and contact areas between parts, under gaskets or seals, inside cracks and seams, spaces filled with deposits and under sludge piles.
Black powder is an industry name for the abrasive, reactive particulate contamination present in all gas and hydrocarbon fluid transmission lines. Black powder ranges from light brown to black, and the mineral makeup varies per production field around the world.
Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.
Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace. It is therefore thermodynamically inevitable that these metals when exposed to various environments would revert to their state found in nature. Corrosion and corrosion engineering thus involves a study of chemical kinetics, thermodynamics, electrochemistry and materials science.
Nitrogen generators and stations are stationary or mobile air-to-nitrogen production complexes.
Corrosion in Ballast Tanks is the deterioration process where the surface of a ballast tank progresses from microblistering, to loss of tank coating, and finally to cracking of the tank steel itself.
Corrosion monitoring is the use of a corrator or set of methods and equipment to provide offline or online information about corrosion rate expressed in mpy. - for better care and to take or improve preventive measures to combat and protect against corrosion.
Robotic non-destructive testing (NDT) is a method of inspection used to assess the structural integrity of petroleum, natural gas, and water installations. Crawler-based robotic tools are commonly used for in-line inspection (ILI) applications in pipelines that cannot be inspected using traditional intelligent pigging tools.
A water distribution system is a part of water supply network with components that carry potable water from a centralized treatment plant or wells to consumers to satisfy residential, commercial, industrial and fire fighting requirements.