Oil additive

Last updated

Oil additives are chemical compounds that improve the lubricant performance of base oil (or oil "base stock"). The manufacturer of many oils can use the same base stock for each formulation and can choose different additives for each use. Additives comprise up to 5% by weight of some oils. [1]

Contents

Nearly all commercial motor oils contain additives, whether the oils are synthetic or petroleum based. Essentially, only the American Petroleum Institute (API) Service SA motor oils have no additives, and they are therefore incapable of protecting modern engines. [2] The choice of additives is determined by the use, e.g. the oil for a diesel engine with direct injection in a pickup truck (API Service CJ-4) has different additives than the oil used in a small gasoline-powered outboard motor on a boat (2-cycle engine oil).

Types of additives

Oil additives are vital for the proper lubrication and prolonged use of motor oil in modern internal combustion engines. Without many of these, the oil would become contaminated, break down, leak out, or not properly protect engine parts at all operating temperatures. Just as important are additives for oils used inside gearboxes, automatic transmissions, and bearings. Some of the most important additives include those used for viscosity and lubricity, contaminant control, for the control of chemical breakdown, and for seal conditioning. Some additives permit lubricants to perform better under severe conditions, such as extreme pressures and temperatures and high levels of contamination.

Controlling chemical breakdown

Chemical structure of a zinc dialkyldithiophosphate, a typical antiwear agent found in many motor oils. Zn(dtp)2.png
Chemical structure of a zinc dialkyldithiophosphate, a typical antiwear agent found in many motor oils.

For viscosity

For lubricity

Nanoparticle flakes from the oil additive TriboTEX. Image taken with electron microscope showing the nano scale. Nanoflakes.jpg
Nanoparticle flakes from the oil additive TriboTEX. Image taken with electron microscope showing the nano scale.
TEM image of a group of scientific-grade nanoparticles manufactured by Nanotech Industrial Solutions. Note the near-spherical shape and presence of a hollow core. IF-WS2 nanoparticles .jpg
TEM image of a group of scientific-grade nanoparticles manufactured by Nanotech Industrial Solutions. Note the near-spherical shape and presence of a hollow core.

For contaminant control

For other reasons

Additives in the aftermarket and controversy

Motor oil is manufactured with numerous additives, and there are also aftermarket additives. A glaring inconsistency of mass-marketed aftermarket oil additives is that they often use additives which are foreign to motor oil. On the other hand, commercial additives are also sold that are designed for extended drain intervals (to replace depleted additives in used oil) or for formulating oils in situ (to make a custom motor oil from base stock). Commercial additives are identical to the additives found in off-the-shelf motor oil, while mass-marketed additives have some of each.

Although PTFE, a solid, was used in some aftermarket oil additives, some users said that the PTFE clumped together, clogging filters. Certain people[ who? ] in the 1990s reported that this was corroborated by NASA [12] and U.S. universities. [13] However, if the PTFE particles are smaller than those apparently used in the 1980s and 1990s, then PTFE can be an effective lubricant in suspension. [14] The size of the particle and many other interrelated components of a lubricant make it difficult to make blanket statements about whether PTFE is useful or harmful. Although PTFE has been called "the slickest substance known to man", [15] [16] it would hardly do any good if it remains in the oil filter.

Some mass-market engine oil additives, notably the ones containing PTFE/Teflon (e.g. Slick 50) [17] and chlorinated paraffins (e.g. Dura Lube), [18] caused a major backlash by consumers; the U.S. Federal Trade Commission investigated many mass-marketed engine oil additives in the late 1990s. Although there is no reason to say that all oil additives used in packaged engine oil are good and all aftermarket oil additives are bad, there has been a tendency in the aftermarket industry to make unfounded claims regarding the efficacy of their oil additives. These unsubstantiated claims have caused consumers to be lured into adding a bottle of chemicals to their engines which do not lower emissions, improve wear resistance, lower temperatures, improve efficiency, or extend engine life more than the (much cheaper) oil would have. Many consumers are convinced that aftermarket oil additives work, but many consumers are convinced that they do not work and are in fact detrimental to the engine. The topic is hotly debated on the Internet.

See also

Related Research Articles

A lubricant is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, transporting foreign particles, or heating or cooling the surfaces. The property of reducing friction is known as lubricity.

<span class="mw-page-title-main">Polytetrafluoroethylene</span> Synthetic polymer

Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a spin-off from DuPont, which originally discovered the compound in 1938.

<span class="mw-page-title-main">Motor oil</span> Lubricant used for lubrication of internal combustion engines

Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, detergents, dispersants, and, for multi-grade oils, viscosity index improvers. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves the sealing of piston rings, and cools the engine by carrying heat away from moving parts.

<span class="mw-page-title-main">Hydraulic fluid</span> Medium to transfer power in hydraulic machinery

A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoes, hydraulic brakes, power steering systems, automatic transmissions, garbage trucks, aircraft flight control systems, lifts, and industrial machinery.

<span class="mw-page-title-main">Cutting fluid</span> Coolants and lubricants used in metalworking

Cutting fluid is a type of coolant and lubricant designed specifically for metalworking processes, such as machining and stamping. There are various kinds of cutting fluids, which include oils, oil-water emulsions, pastes, gels, aerosols (mists), and air or other gases. Cutting fluids are made from petroleum distillates, animal fats, plant oils, water and air, or other raw ingredients. Depending on context and on which type of cutting fluid is being considered, it may be referred to as cutting fluid, cutting oil, cutting compound, coolant, or lubricant.

Tribology is the science and engineering of understanding friction, lubrication and wear phenomena for interacting surfaces in relative motion. It is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. The fundamental objects of study in tribology are tribosystems, which are physical systems of contacting surfaces. Subfields of tribology include biotribology, nanotribology and space tribology. It is also related to other areas such as the coupling of corrosion and tribology in tribocorrosion and the contact mechanics of how surfaces in contact deform. Approximately 20% of the total energy expenditure of the world is due to the impact of friction and wear in the transportation, manufacturing, power generation, and residential sectors.

<span class="mw-page-title-main">Synthetic oil</span> Lubricant consisting of artificially made chemical compounds

Synthetic oil is a lubricant consisting of chemical compounds that are artificially modified or synthesised. Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. The base material, however, is still overwhelmingly crude oil that is distilled and then modified physically and chemically. The actual synthesis process and composition of additives is generally a commercial trade secret and will vary among producers.

<span class="mw-page-title-main">Gear oil</span> Lubricant used in vehicles and machinery

Gear oil is a lubricant made specifically for transmissions, transfer cases, and differentials in automobiles, trucks, and other machinery. It has high viscosity and usually contains organosulfur compounds. Some modern automatic transaxles do not use a heavy oil at all but lubricate with the lower viscosity hydraulic fluid, which is available at pressure within the automatic transmission. Gear oils account for about 20% of the lubricant market.

The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils. The lower the VI, the more the viscosity is affected by changes in temperature. The higher the VI, the more stable the viscosity remains over some temperature range. The VI was originally measured on a scale from 0 to 100; however, advancements in lubrication science have led to the development of oils with much higher VIs.

Oil analysis (OA) is the laboratory analysis of a lubricant's properties, suspended contaminants, and wear debris. OA is performed during routine predictive maintenance to provide meaningful and accurate information on lubricant and machine condition. By tracking oil analysis sample results over the life of a particular machine, trends can be established which can help eliminate costly repairs. The study of wear in machinery is called tribology. Tribologists often perform or interpret oil analysis data.

<span class="mw-page-title-main">Zinc dithiophosphate</span> Lubricant additive

Zinc dialkyldithiophosphates are a family of coordination compounds developed in the 1940s that feature zinc bound to the anion of a dialkyldithiophosphoric salt. These uncharged compounds are not salts. They are soluble in nonpolar solvents, and the longer-chain derivatives easily dissolve in mineral and synthetic oils used as lubricants. They come under CAS number 68649-42-3. In aftermarket oil additives, the percentage of ZDDP ranges approximately between 2 and 15%. Zinc dithiophosphates have many names, including ZDDP, ZnDTP, and ZDP.

<span class="mw-page-title-main">Automatic transmission fluid</span> Hydraulic fluid used in vehicles with automatic transmissions

Automatic transmission fluid (ATF) is a specialized hydraulic fluid that is essential for the proper functioning of vehicles equipped with automatic transmissions. Usually, it is coloured red or green to differentiate it from motor oil and other fluids in the vehicle.

ApNano Materials is a nanotechnology company, wholly owned and operated by Nanotech Industrial Solutions (NIS) with R&D lab, manufacturing, blending and packaging facilities in Avenel, New Jersey, United States, and Yavne, Israel. NIS is the only company in the world with an exclusive license to manufacture inorganic fullerene-like tungsten disulfide (IF-WS2) submicron (nanosized) spherical particles on a commercial scale with the patent from the Weizmann Institute. These inorganic fullerene-like tungsten disulfide-based nanomaterials opened up new possibilities for developing extreme performance industrial lubricants, coatings, and polymer composites.

Friction modifiers are added to lubricants in order to reduce friction and wear in machine components. They are particularly important in the boundary lubrication regime, where they can prevent solid surfaces from coming into direct contact, substantially reducing friction and wear.

Lubricity is the measure of the reduction in friction and/or wear by a lubricant. The study of lubrication and wear mechanisms is called tribology.

<span class="mw-page-title-main">Shell Rotella</span> Brand of heavy-duty engine lubricant

Shell Rotella is a line of heavy-duty engine lubrication products produced by Shell plc. The line includes engine oils, gear oils and coolants. The oil carries both the American Petroleum Institute (API) diesel "C" rating as well as the API gasoline engine "S" rating. Ratings differ based on the oil. Rotella oils, like the T3 15W-40, meet both the API CJ-4 and SM specifications, and may be used in both gasoline and diesel engines. However, it is formulated specifically for vehicles without catalytic converters, containing phosphorus levels beyond the 600–800 ppm range. Therefore, Rotella is not recommended for gasoline vehicles with catalytic converters due to the higher risk of damaging these emission controls. Newer formulations of Rotella T6 however are API SM rated as safe for pre-2011 gasoline vehicles.

Dry lubricants or solid lubricants are materials that, despite being in the solid phase, are able to reduce friction between two surfaces sliding against each other without the need for a liquid oil medium.

<span class="mw-page-title-main">Automotive oil recycling</span> The process of recycling used engine and motor oils

Automotive oil recycling involves the recycling of used oils and the creation of new products from the recycled oils, and includes the recycling of motor oil and hydraulic oil. Oil recycling also benefits the environment: increased opportunities for consumers to recycle oil lessens the likelihood of used oil being dumped on lands and in waterways. For example, one gallon of motor oil dumped into waterways has the potential to pollute one million gallons of water.

Base oils are used to manufacture products including lubricating greases, motor oil and metal processing fluids. Different products require different compositions and properties in the oil. One of the most important factors is the liquid’s viscosity at various temperatures. Whether or not a crude oil is suitable to be made into a base oil is determined by the concentration of base oil molecules as well as how easily these can be extracted.

Base Number (BN) is a measurement of basicity that is expressed in terms of the number of milligrams of potassium hydroxide per gram of oil sample. BN is an important measurement in petroleum products, and the value varies depending on its application. BN generally ranges from 6–8 mg KOH/g in modern lubricants, 7–10 mg KOH/g for general internal combustion engine use and 10–15 mg KOH/g for diesel engine operations. BN is typically higher for marine grade lubricants, approximately 15-80 mg KOH/g, as the higher BN values are designed to increase the operating period under harsh operating conditions, before the lubricant requires replacement.

References

  1. 1 2 Thorsten Bartels et al. "Lubricants and Lubrication" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Weinheim. doi : 10.1002/14356007.a15_423
  2. "API's Engine Oil Guide, 2006" (PDF).
  3. Chevron Oronite's Diesel Additives
  4. 1 2 3 "TAN & TBN - Spectro Scientific". www.spectrosci.com.
  5. "Potassium Hydroxide in the Oil and Gas Industry - Continental Chemical".
  6. Roger F. Sebenik et al. "Molybdenum and Molybdenum Compounds" in Ullmann's Encyclopedia of Chemical Technology 2005; Wiley-VCH, Weinheim. doi : 10.1002/14356007.a16_655
  7. Whale oil dexron Turbo hydra-matic 350 By Ron Sessions], page 20.
  8. Mytrofanov, Oleksandr; Proskurin, Arkadii; Poznanskyi, Andrii; Zivenko, Oleksii (2023-08-31). "Determining the effect of anti-friction additive on the power of mechanical losses in a rotary piston engine". Eastern-European Journal of Enterprise Technologies. 4 (1 (124)): 28–34. doi: 10.15587/1729-4061.2023.284500 . ISSN   1729-4061.
  9. "ZDDP Engine Oil - Mustang Monthly". Mustang 360. Archived from the original on 2009-09-12. Retrieved 2010-06-27.
  10. Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.; Wen, Jianguo; Berman, Diana; Zhang, Yuepeng; Arey, Bruce; Zhu, Zihua; Erdemir, Ali (2017). "Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive". Tribology International. 110: 35–40. doi: 10.1016/j.triboint.2017.02.003 . ISSN   0301-679X.
  11. "Nanotechnology Repairs Engine Damage in Cars". NASA Spinoff. 2020.
  12. A NASA research report is purported to say about PTFE oil additives, "In the types of bearing surface contact we have looked at, we have seen no benefit. In some cases we have seen detrimental effect. The solids in the oil tend to accumulate at inlets and act as a dam, which simply blocks the oil from entering. Instead of helping, it is actually depriving parts of lubricant." The source of this quote is unknown, but the quote itself appears in the magazine article referenced below.
  13. See Road Rider Magazine (now Motorcycle Consumer News) article from August 1992 by Fred Rau, which has been reprinted extensively, and see oilsfilters.htm for a contemporary discussion.
  14. See Nanoflon, a PTFE that is small enough for suspension in lubricants and used commercially for that purpose.
  15. Presenting PTFE: A Potent Resin, A Well-Kept Secret by Owen Heatwole, April 1981, for QMI.
  16. "Edwards Engines - Product Specifications". 24 February 2010. Archived from the original on 24 February 2010.
  17. Quaker State settles FTC charges against Slick 50 for US$10 million in 1997.
  18. Dura Lube settles FTC charges Archived 2013-01-15 at the Wayback Machine by paying US$2 million in consumer redress in 2000.