Thiophenol

Last updated
Thiophenol
Skeletal formula Thiophenol-2D.svg
Skeletal formula
Ball-and-stick model Thiophenol-3D-balls.png
Ball-and-stick model
Names
Preferred IUPAC name
Benzenethiol [1]
Other names
  • Thiophenol (or phenylthiol)
  • Phenyl mercaptan
  • Mercaptobenzene
Identifiers
3D model (JSmol)
506523
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.306 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-635-3
PubChem CID
RTECS number
  • DC0525000
UNII
  • InChI=1S/C6H6S/c7-6-4-2-1-3-5-6/h1-5,7H Yes check.svgY
    Key: RMVRSNDYEFQCLF-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H6S/c7-6-4-2-1-3-5-6/h1-5,7H
    Key: RMVRSNDYEFQCLF-UHFFFAOYAL
  • Sc1ccccc1
Properties
C6H6S
Molar mass 110.17 g·mol−1
AppearanceColorless liquid
Odor Unpleasant, pungent
Density 1.0766 g/mL
Melting point −15 °C (5 °F; 258 K)
Boiling point 169 °C (336 °F; 442 K)
0.08% [2]
Solubility Most organic solvents; aqueous base
Vapor pressure 1 mmHg (18°C) [2]
Acidity (pKa)
  • 6.62 (H2O) [3]
  • 10.28 (DMSO) [4]
-70.8·10−6 cm3/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Danger
H226, H300, H310, H314, H315, H330, H410
P210, P233, P240, P241, P242, P243, P260, P262, P264, P270, P271, P273, P280, P284, P301+P310, P301+P330+P331, P302+P350, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P320, P321, P322, P330, P332+P313, P361, P362, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
4
2
1
OX
Flash point 56 °C; 132 °F; 329 K [2]
NIOSH (US health exposure limits):
PEL (Permissible)
none [2]
REL (Recommended)
C 0.1 ppm (0.5 mg/m3) [15-minute] [2]
IDLH (Immediate danger)
N.D. [2]
Related compounds
Related thiols
1,2-Benzenedithiol
Benzenemethanethiol
Related compounds
Phenol
Benzeneselenol
Diphenyl disulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols . An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

Contents

Thiophenols also describes a class of compounds formally derived from thiophenol itself. All have a sulfhydryl group (-SH) covalently bonded to an aromatic ring. The organosulfur ligand in the medicine thiomersal is a thiophenol.

Synthesis

There are several methods of synthesis for thiophenol and related compounds, although thiophenol itself is usually purchased for laboratory operations. 2 methods are the reduction of benzenesulfonyl chloride with zinc [5] and the action of elemental sulfur on phenyl magnesium halide or phenyllithium followed by acidification.

Via the Newman–Kwart rearrangement, phenols (1) can be converted to the thiophenols (5) by conversion to the O-aryl dialkylthiocarbamates (3), followed by heating to give the isomeric S-aryl derivative (4). [6]

Phenols-to-thiophenols-via-NKR-2D-skeletal.svg

In the Leuckart thiophenol reaction, the starting material is an aniline through the diazonium salt (ArN2X) and the xanthate (ArS(C=S)OR). [7] [8] Alternatively, sodium sulfide and triazenes can react in organic solutions and yield thiophenols. [9]

Thiophenol can be manufactured from chlorobenzene and hydrogen sulfide over alumina at 700 to 1,300 °F (371 to 704 °C). The disulfide is the primary byproduct. [10] The reaction medium is corrosive and requires ceramic or similar reactor lining. Aryl iodides and sulfur in certain conditions may also produce thiophenols. [11]

Applications

Thiophenols are used in the production of pharmaceuticals including of sulfonamides. The antifungal agents butoconazole and merthiolate are derivatives of thiophenols. [9]

Properties and reactions

Acidity

Thiophenol has appreciably greater acidity than does phenol, as is shown by their pKa values (6.62 for thiophenol and 9.95 for phenol). A similar pattern is seen for H2S versus H2O, and all thiols versus the corresponding alcohols. Treatment of PhSH with strong base such as sodium hydroxide (NaOH) or sodium metal affords the salt sodium thiophenolate (PhSNa).

Alkylation

The thiophenolate is highly nucleophilic, which translates to a high rate of alkylation. [12] Thus, treatment of C6H5SH with methyl iodide in the presence of a base gives methyl phenyl sulfide, C6H5SCH3, a thioether often referred to as thioanisole. Such reactions are fairly irreversible. C6H5SH also adds to α,β-unsaturated carbonyls via Michael addition.

Oxidation

Thiophenols, especially in the presence of base are easily oxidized to diphenyl disulfide:

4 C6H5SH + O2 → 2 C6H5S-SC6H5 + 2 H2O

The disulfide can be reduced back the thiol using sodium borohydride followed by acidification. This redox reaction is also exploited in the use of C6H5SH as a source of H atoms.

Chlorination

Phenylsulfenyl chloride, a blood-red liquid (b.p. 41–42 °C, 1.5 mm Hg), can be prepared by the reaction of thiophenol with chlorine (Cl2). [13]

Coordination to metals

Metal cations form thiophenolates, some of which are polymeric. One example is "C6H5SCu," obtained by treating copper(I) chloride with thiophenol. [14]

Safety

The US National Institute for Occupational Safety and Health has established a recommended exposure limit at a ceiling of 0.1 ppm (0.5 mg m3), and exposures not greater than 15 minutes. [15]

Related Research Articles

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

Demethylation is the chemical process resulting in the removal of a methyl group (CH3) from a molecule. A common way of demethylation is the replacement of a methyl group by a hydrogen atom, resulting in a net loss of one carbon and two hydrogen atoms.

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

<span class="mw-page-title-main">Alkylation</span> Transfer of an alkyl group from one molecule to another

Alkylation is a chemical reaction that entails transfer of an alkyl group. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene. Alkylating agents are reagents for effecting alkylation. Alkyl groups can also be removed in a process known as dealkylation. Alkylating agents are often classified according to their nucleophilic or electrophilic character. In oil refining contexts, alkylation refers to a particular alkylation of isobutane with olefins. For upgrading of petroleum, alkylation produces a premium blending stock for gasoline. In medicine, alkylation of DNA is used in chemotherapy to damage the DNA of cancer cells. Alkylation is accomplished with the class of drugs called alkylating antineoplastic agents.

<span class="mw-page-title-main">Ethanethiol</span> Chemical compound

Ethanethiol, commonly known as ethyl mercaptan, is an organosulfur compound with the formula CH3CH2SH. is a colorless liquid with a distinct odor. Abbreviated EtSH, it consists of an ethyl group (Et), CH3CH2, attached to a thiol group, SH. Its structure parallels that of ethanol, but with sulfur in place of oxygen. The odor of EtSH is infamous. Ethanethiol is more volatile than ethanol due to a diminished ability to engage in hydrogen bonding. Ethanethiol is toxic in high concentrations. It occurs naturally as a minor component of petroleum, and may be added to otherwise odorless gaseous products such as liquefied petroleum gas (LPG) to help warn of gas leaks. At these concentrations, ethanethiol is not harmful.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Chlorobenzene</span> Aromatic organochlorine compound

Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

<span class="mw-page-title-main">Diphenyl disulfide</span> Chemical compound

Diphenyl disulfide is the chemical compound with the formula (C6H5S)2. This colorless crystalline material is often abbreviated Ph2S2. It is one of the more commonly encountered organic disulfides in organic synthesis. Minor contamination by thiophenol is responsible for the disagreeable odour associated with this compound.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

<span class="mw-page-title-main">Thiocarbamate</span> Organosulfur compounds of the forms ROC(S)NR2 or RSC(O)NR2

In organic chemistry, thiocarbamates (thiourethanes) are a family of organosulfur compounds. As the prefix thio- suggests, they are sulfur analogues of carbamates. There are two isomeric forms of thiocarbamates: O-thiocarbamates, ROC(=S)NR2 (esters), and S-thiocarbamates, RSC(=O)NR2 (thioesters).

Unlike its lighter congeners, the halogen iodine forms a number of stable organic compounds, in which iodine exhibits higher formal oxidation states than -1 or coordination number exceeding 1. These are the hypervalent organoiodines, often called iodanes after the IUPAC rule used to name them.

<span class="mw-page-title-main">Sulfenyl chloride</span> Chemical group (R–S–Cl)

In organosulfur chemistry, a sulfenyl chloride is a functional group with the connectivity R−S−Cl, where R is alkyl or aryl. Sulfenyl chlorides are reactive compounds that behave as sources of RS+. They are used in the formation of RS−N and RS−O bonds. According to IUPAC nomenclature they are named as alkyl thiohypochlorites, i.e. esters of thiohypochlorous acid.

<span class="mw-page-title-main">Sulfenamide</span> Molecules of the form >N–S–

In organosulfur chemistry, sulfenamides are a class of organosulfur compounds characterized by the general formula R−S−N(−R)2, where the R groups are hydrogen, alkyl, or aryl. Sulfenamides have been used extensively in the vulcanization of rubber using sulfur. They are related to the oxidized compounds known as sulfinamides and sulfonamides.

<span class="mw-page-title-main">Bunte salt</span>

In organosulfur chemistry, a Bunte salt is an archaic name for salts with the formula RSSO3Na+. They are also called S-alkylthiosulfates or S-arylthiosulfates. These compounds are typically derived from alkylation on the pendant sulfur of sodium thiosulfate:

Divinyl sulfide is the organosulfur compound with the formula S(CH=CH2)2. A colorless liquid with a faint odor, it is found in some species of Allium.

References

  1. "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. P001–P004. doi:10.1039/9781849733069-FP001 (inactive 2024-06-30). ISBN   978-0-85404-182-4.{{cite book}}: CS1 maint: DOI inactive as of June 2024 (link)
  2. 1 2 3 4 5 6 NIOSH Pocket Guide to Chemical Hazards. "#0050". National Institute for Occupational Safety and Health (NIOSH).
  3. Cox, Brian G. Acids and Bases: Solvent Effects on Acid-base Strength. 1st ed. Oxford, UK: Oxford UP, 2013.
  4. Bordwell, Frederick G.; Hughes, David L. (1982). "Thiol acidities and thiolate ion reactivities toward butyl chloride in dimethyl sulfoxide solution. The question of curvature in Broensted plots". The Journal of Organic Chemistry. 47 (17): 3224–3232. doi:10.1021/jo00138a005.
  5. Adams, R.; C. S. Marvel, C. S. "Thiophenol". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 1, p. 504..
  6. Melvin S. Newman and Frederick W. Hetzel (1971). "Thiophenols from Phenols: 2-Naphthalenethiol". Organic Syntheses . 51: 139. doi:10.15227/orgsyn.051.0139 .
  7. Leuckart, J. prakt. Chem. , [2] 41, 189 (1890).
  8. Tarbell, D. S.; Fukushima, D. K. (1947). "m-Thiocresol". Organic Syntheses . 27: 81. doi:10.15227/orgsyn.027.0081 ; Collected Volumes, vol. 3, p. 809.
  9. 1 2 Kazem-Rostami, Masoud; Khazaei, Ardeshir; Moosavi-Zare, Ahmad; Bayat, Mohammad; Saednia, Shahnaz (2012). "One-pot synthesis of thiophenols". Synlett. 23 (13): 1893–1896. doi:10.1055/s-0032-1316557. S2CID   196805424.
  10. USPatent 2,490,257,Duncan J. Crowley&Alvin L Kosak,"Mono- and Polyalkyl Mono- and Polynuclear Mercaptans",issued 1949-12-06, assigned to Socony-Vacuum Oil Co.
  11. Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma, D., A (2009). "General and Efficient Approach to Aryl Thiols: CuI-Catalyzed Coupling of Aryl Iodides with Sulfur and Subsequent Reduction". Organic Letters. 22 (1): 52–56. doi:10.1021/acs.orglett.9b03866. PMID   31833778. S2CID   209341111.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Campopiano, O. (2004). "Thiophenol". Encyclopedia of Reagents for Organic Synthesis . New York: John Wiley & Sons. doi:10.1002/047084289X. hdl: 10261/236866 . ISBN   9780471936237..
  13. Barrett, A. G. M.; Dhanak, D.; Graboski, G. G.; Taylor, S. J. (1993). "(Phenylthio)nitromethane". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 8, p. 550.
  14. Posner, G. H.; Whitten, C. E. "Secondary and Tertiary Alkyl Ketones from Carboxylic Acid Chlorides and Lithium Phenylthio(alkyl)cuprate Reagents: tert-Butyl Phenyl Ketone". Organic Syntheses {{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 248.
  15. CDC - NIOSH Pocket Guide to Chemical Hazards