Carburizing

Last updated
A modern computerised gas carburising furnace Computerised Heat Treatment Furnance.jpg
A modern computerised gas carburising furnace

Carburizing, or carburising, is a heat treatment process in which iron or steel absorbs carbon while the metal is heated in the presence of a carbon-bearing material, such as charcoal or carbon monoxide. The intent is to make the metal harder and more wear resistant. [1] Depending on the amount of time and temperature, the affected area can vary in carbon content. Longer carburizing times and higher temperatures typically increase the depth of carbon diffusion. When the iron or steel is cooled rapidly by quenching, the higher carbon content on the outer surface becomes hard due to the transformation from austenite to martensite, while the core remains soft and tough as a ferritic and/or pearlite microstructure. [2]

Contents

This manufacturing process can be characterized by the following key points: It is applied to low-carbon workpieces; workpieces are in contact with a high-carbon gas, liquid or solid; it produces a hard workpiece surface; workpiece cores largely retain their toughness and ductility; and it produces case hardness depths of up to 0.25 inches (6.4 mm). In some cases it serves as a remedy for undesired decarburization that happened earlier in a manufacturing process.

Method

Carburization of steel involves a heat treatment of the metallic surface using a source of carbon. [3] Carburization can be used to increase the surface hardness of low carbon steel. [3]

Early carburization used a direct application of charcoal packed around the sample to be treated (initially referred to as case hardening), but modern techniques use carbon-bearing gases or plasmas (such as carbon dioxide or methane). The process depends primarily upon ambient gas composition and furnace temperature, which must be carefully controlled, as the heat may also impact the microstructure of the remainder of the material. For applications where great control over gas composition is desired, carburization may take place under very low pressures in a vacuum chamber.

Plasma carburization is increasingly used to improve the surface characteristics (such as wear, corrosion resistance, hardness, load-bearing capacity, in addition to quality-based variables) of various metals, notably stainless steels. The process is environmentally friendly (in comparison to gaseous or solid carburizing). It also provides an even treatment of components with complex geometry (the plasma can penetrate into holes and tight gaps), making it very flexible in terms of component treatment.

The process of carburization works via the diffusion of carbon atoms into the surface layers of a metal. As metals are made up of atoms bound tightly into a metallic crystalline lattice, the carbon atoms diffuse into the crystal structure of the metal and either remain in solution (dissolved within the metal crystalline matrix — this normally occurs at lower temperatures) or react with elements in the host metal to form carbides (normally at higher temperatures, due to the higher mobility of the host metal's atoms). If the carbon remains in solid solution, the steel is then heat treated to harden it. Both of these mechanisms strengthen the surface of the metal, the former by forming pearlite or martensite, and the latter via the formation of carbides. Both of these materials are hard and resist abrasion.

Gas carburizing is normally carried out at a temperature within the range of 900 to 950 °C.

In oxy-acetylene welding, a carburizing flame is one with little oxygen, which produces a sooty, lower-temperature flame. It is often used to anneal metal, making it more malleable and flexible during the welding process.

A main goal when producing carburized workpieces is to ensure maximum contact between the workpiece surface and the carbon-rich elements. In gas and liquid carburizing, the workpieces are often supported in mesh baskets or suspended by wire. In pack carburizing, the workpiece and carbon are enclosed in a container to ensure that contact is maintained over as much surface area as possible. Pack carburizing containers are usually made of carbon steel coated with aluminum or heat-resisting nickel-chromium alloy and sealed at all openings with fire clay.

Carburizing can be achieved in either a Conventional Furnace (Atmosphere Furnace) or a Low Pressure Carburizing Furnace (LPC). [4]

Hardening agents

There are different types of elements or materials that can be used to perform this process, but these mainly consist of high carbon content material. A few typical hardening agents include carbon monoxide gas (CO), sodium cyanide and barium carbonate, or hardwood charcoal. In gas carburizing, carbon is given off by propane or natural gas. In liquid carburizing, the carbon is derived from a molten salt composed mainly of sodium cyanide (NaCN) and barium chloride (BaCl2). In pack carburizing, carbon monoxide is given off by coke or hardwood charcoal.

Geometrical possibilities

There are all sorts of workpieces that can be carburized, which means almost limitless possibilities for the shape of materials that can be carburized. However careful consideration should be given to materials that contain nonuniform or non-symmetric sections. Different cross sections may have different cooling rates which can cause excessive stresses in the material and result in breakage. [5]

Dimensional changes

It is virtually impossible to have a workpiece undergo carburization without having some dimensional changes. The amount of these changes varies based on the type of material that is used, the carburizing process that the material undergoes and the original size and shape of the work piece. However changes are small compared to heat-treating operations. [5]

Change in material properties [5]
Work material propertiesEffects of carburizing
Mechanical
  • Increased surface hardness
  • Increased wear resistance
  • Increased fatigue/tensile strengths
Physical
  • Grain growth may occur
  • Change in volume may occur
Chemical
  • Increased surface carbon content

Workpiece material

Typically the materials that are carbonized are low-carbon and alloy steels with initial carbon content ranging from 0.2 to 0.3%. The workpiece surface must be free from contaminants, such as oil, oxides, or alkaline solutions, which prevent or impede the diffusion of carbon into the workpiece surface. [5]

Comparing different methods

In general, pack carburizing equipment can accommodate larger workpieces than liquid or gas carburizing equipment, but liquid or gas carburizing methods are faster and lend themselves to mechanized material handling. Also the advantages of carburizing over carbonitriding are greater case depth (case depths of greater than 0.3 inch are possible), less distortion, and better impact strength. This makes it perfect for high strength and wear applications (e.g. scissors or swords). The disadvantages include added expense, higher working temperatures, and increased time. [5]

Choice of equipment

In general, gas carburizing is used for parts that are large. Liquid carburizing is used for small and medium parts and pack carburizing can be used for large parts and individual processing of small parts in bulk. Vacuum carburizing (low pressure carburizing or LPC) can be applied across a large spectrum of parts when used in conjunction with either oil or high pressure gas quenching (HPGQ), depending on the alloying elements within the base material. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Alloy</span> Mixture or metallic solid solution composed of two or more elements

An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Most alloys are metallic and show good electrical conductivity, ductility, opacity, and luster, and may have properties that differ from those of the pure elements such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties such as corrosion resistance or mechanical strength.

<span class="mw-page-title-main">Forge</span> Workshops of a blacksmith, who is an ironsmith who makes iron into tools or other objects

A forge is a type of hearth used for heating metals, or the workplace (smithy) where such a hearth is located. The forge is used by the smith to heat a piece of metal to a temperature at which it becomes easier to shape by forging, or to the point at which work hardening no longer occurs. The metal is transported to and from the forge using tongs, which are also used to hold the workpiece on the smithy's anvil while the smith works it with a hammer. Sometimes, such as when hardening steel or cooling the work so that it may be handled with bare hands, the workpiece is transported to the slack tub, which rapidly cools the workpiece in a large body of water. However, depending on the metal type, it may require an oil quench or a salt brine instead; many metals require more than plain water hardening. The slack tub also provides water to control the fire in the forge.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Induction heating</span> Process of heating an electrically conducting object by electromagnetic induction

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

Ultra-high vacuum is the vacuum regime characterised by pressures lower than about 1×10−6 pascals. UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximately 40 km, so the gas is in free molecular flow, and gas molecules will collide with the chamber walls many times before colliding with each other. Almost all molecular interactions therefore take place on various surfaces in the chamber.

<span class="mw-page-title-main">Quenching</span> Rapid cooling of a workpiece to obtain certain material properties

In materials science, quenching is the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as phase transformations, from occurring. It does this by reducing the window of time during which these undesired reactions are both thermodynamically favorable and kinetically accessible; for instance, quenching can reduce the crystal grain size of both metallic and plastic materials, increasing their hardness.

<span class="mw-page-title-main">Case-hardening</span> Process of hardening the surface of a metal object

Case-hardening or carburization is the process of introducing carbon to the surface of a low carbon iron or much more commonly low carbon steel object in order to enable the surface to be hardened.

<span class="mw-page-title-main">Tempering (metallurgy)</span> Process of heat treating used to increase the toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

Decarburization is the process of decreasing carbon content, which is the opposite of carburization.

<span class="mw-page-title-main">Carbonitriding</span> Surface hardening process

Carbonitriding is a metallurgical surface modification technique that is used to increase the surface hardness of a metal, thereby reducing wear.

In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling.

<span class="mw-page-title-main">Vacuum furnace</span>

A vacuum furnace is a type of furnace in which the product in the furnace is surrounded by a vacuum during processing. The absence of air or other gases prevents oxidation, heat loss from the product through convection, and removes a source of contamination. This enables the furnace to heat materials to temperatures as high as 3,000 °C (5,432 °F) with select materials. Maximum furnace temperatures and vacuum levels depend on melting points and vapor pressures of heated materials. Vacuum furnaces are used to carry out processes such as annealing, brazing, sintering and heat treatment with high consistency and low contamination.

<span class="mw-page-title-main">Nitriding</span> Nitrogen diffusion case-hardening process

Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, aluminium and molybdenum.

Boriding, also called boronizing, is the process by which boron is added to a metal or alloy. It is a type of surface hardening. In this process boron atoms are diffused into the surface of a metal component. The resulting surface contains metal borides, such as iron borides, nickel borides, and cobalt borides, As pure materials, these borides have extremely high hardness and wear resistance. Their favorable properties are manifested even when they are a small fraction of the bulk solid. Boronized metal parts are extremely wear resistant and will often last two to five times longer than components treated with conventional heat treatments such as hardening, carburizing, nitriding, nitrocarburizing or induction hardening. Most borided steel surfaces will have iron boride layer hardnesses ranging from 1200-1600 HV. Nickel-based superalloys such as Inconel and Hastalloys will typically have nickel boride layer hardnesses of 1700-2300 HV.

<span class="mw-page-title-main">Diffusion hardening</span> Process used in manufacturing

Diffusion hardening is a process used in manufacturing that increases the hardness of steels. In diffusion hardening, diffusion occurs between a steel with a low carbon content and a carbon-rich environment to increase the carbon content of the steel and ultimately harden the workpiece. Diffusion only happens through a small thickness of a piece of steel, so only the surface is hardened while the core maintains its original mechanical properties. Heat treating may be performed on a diffusion hardened part to increase the hardness of the core as desired, but in most cases in which diffusion hardening is performed, it is desirable to have parts with a hard outer shell and a more ductile inside. Heat treating and quenching is a more efficient process if hardness is desired throughout the whole part. In the case of manufacturing parts subject to large amounts of wear, such as gears, the non-uniform properties acquired through diffusion hardening are desired. Through this process, gears obtain a hard wear-resistant outer shell but maintain their softer and more impact-resistant core.

<span class="mw-page-title-main">Austempering</span>

Austempering is heat treatment that is applied to ferrous metals, most notably steel and ductile iron. In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce / eliminate distortion. Austempering is defined by both the process and the resultant microstructure. Typical austempering process parameters applied to an unsuitable material will not result in the formation of bainite or ausferrite and thus the final product will not be called austempered. Both microstructures may also be produced via other methods. For example, they may be produced as-cast or air cooled with the proper alloy content. These materials are also not referred to as austempered.

<span class="mw-page-title-main">Hot working</span> Any metal shaping process occurring above its recrystallization temperature

In metallurgy, hot working refers to processes where metals are plastically deformed above their recrystallization temperature. Being above the recrystallization temperature allows the material to recrystallize during deformation. This is important because recrystallization keeps the materials from strain hardening, which ultimately keeps the yield strength and hardness low and ductility high. This contrasts with cold working.

Ferritic nitrocarburizing or FNC, also known by the proprietary names "Tenifer", "Tufftride", Melonite, and "Arcor", is a range of proprietary case hardening processes that diffuse nitrogen and carbon into ferrous metals at sub-critical temperatures during a salt bath. Other methods of ferritic nitrocarburizing include gaseous processes such as Nitrotec and ion (plasma) ones. The processing temperature ranges from 525 °C (977 °F) to 625 °C (1,157 °F), but usually occurs at 565 °C (1,049 °F). Steel and other ferrous alloys remain in the ferritic phase region at this temperature. This allows for better control of the dimensional stability that would not be present in case hardening processes that occur when the alloy is transitioned into the austenitic phase. There are four main classes of ferritic nitrocarburizing: gaseous, salt bath, ion or plasma, and fluidized-bed.

<span class="mw-page-title-main">Endothermic gas</span>

Endothermic gas is a gas that inhibits or reverses oxidation on the surfaces it is in contact with. This gas is the product of incomplete combustion in a controlled environment. An example mixture is hydrogen gas (H2), nitrogen gas (N2), and carbon monoxide (CO). The hydrogen and carbon monoxide are reducing agents, so they work together to shield surfaces from oxidation.

References

  1. "Carburizing of Steel". The Free Dictionary By Farlex. Archived from the original on 2011-08-31. Retrieved 2012-05-25.
  2. Oberg, E., Jones, F., and Ryffel, H. (1989) Machinery's Handbook 23rd Edition. New York: Industrial Press Inc.
  3. 1 2 "Low-carbon steels". efunda. Retrieved 2012-05-25.
  4. "Low Pressure Carburizing vs. Atmospheric Furnace Technology". ECM USA Vacuum Furnace Systems Manufacturer. Retrieved 2024-08-19.
  5. 1 2 3 4 5 6 Robert H. Todd, Dell K. Allen and Leo Alting Manufacturing Processes Reference Guide. Industrial Press Inc., 1994. pp. 421–426

Further reading