Decarburization

Last updated

Decarburization (or decarbonization) is the process opposite to carburization, namely the reduction of carbon content.

Contents

The term is typically used in metallurgy, describing the reduction of the content of carbon in metals (usually steel). Decarburization occurs when the metal is heated to temperatures of 700 °C or above when carbon in the metal reacts with gases containing oxygen or hydrogen. [1] The removal of carbon removes hard carbide phases resulting in a softening of the metal, primarily at the surfaces which are in contact with the decarburizing gas.

Decarburization can be either advantageous or detrimental, depending on the application for which the metal will be used. It is thus both something that can be done intentionally as a step in a manufacturing process, or something that happens as a side effect of a process (such as rolling) and must be either prevented or later reversed (such as via a carburization step).

The decarburization mechanism can be described as three distinct events: the reaction at the steel surface, the interstitial diffusion of carbon atoms and the dissolution of carbides within the steel. [2]

Chemical reactions

The most common reactions are:

also called the Boudouard reaction

Other reactions are [1]

Electrical steel

Electrical steel is one material that uses decarburization in its production. To prevent the atmospheric gases from reacting with the metal itself, electrical steel is annealed in an atmosphere of nitrogen, hydrogen, and water vapor, where oxidation of the iron is specifically prevented by the proportions of hydrogen and water vapor so that the only reacting substance is carbon being made into carbon monoxide. [1]

Stainless steel

Stainless steel contains additives which are highly oxidizable, such as chromium and molybdenum. Such steels can only be decarburized by reacting with dry hydrogen, which has no water content, unlike wet hydrogen, which is produced in a way that includes some water and can otherwise be used for decarburization. [1]

As a secondary effect

Incidental decarburization can be detrimental to surface properties in products (where carbon content is desirable) when done during heat treatment or after rolling or forging, because the material is only affected to a certain depth according to the temperature and duration of heating. [1] This can be prevented by using an inert or reduced-pressure atmosphere, applying resistive heating for a short duration, by limiting the time that material is under high heat, as is done in a walking-beam furnace, or through restorative carburization, which uses a hydrocarbon atmosphere to transfer carbon into the surface of the material during annealing. [1] The decarburized surface material can also be removed by grinding. [1]

See also

Related Research Articles

Chemical reaction Process that results in the interconversion of chemical species

A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the positions of electrons in the forming and breaking of chemical bonds between atoms, with no change to the nuclei, and can often be described by a chemical equation. Nuclear chemistry is a sub-discipline of chemistry that involves the chemical reactions of unstable and radioactive elements where both electronic and nuclear changes can occur.

Carbide Inorganic compound group

In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece.

Haber process Main process of ammonia production

The Haber process, also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today. It is named after its inventors, the German chemists Fritz Haber and Carl Bosch, who developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst under high temperatures and pressures:

Sulfuric acid chemical compound

Sulfuric acid (American spelling) or sulphuric acid (British spelling), also known as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with molecular formula H2SO4. It is a colourless, odourless, and viscous liquid that is soluble in water and is synthesized in reactions that are highly exothermic.

Corrosion Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable form such as oxide, hydroxide, or sulfide. It is the gradual destruction of materials by chemical and/or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

Brazing High-temperature soldering; metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, the filler metal having a lower melting point than the adjoining metal.

Tungsten carbide Chemical compound

Tungsten carbide is a chemical compound containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through a process called sintering for use in industrial machinery, cutting tools, abrasives, armor-piercing shells and jewellery.

Acidic oxides, or acid anhydride, are oxides that react with water to form an acid, or with a base to form a salt. They are oxides of either nonmetals or of metals in high oxidation states. Their chemistry can be systematically understood by taking an oxoacid and removing water from it, until only an oxide remains. The resulting oxide belongs to this group of substances. For example, sulfurous acid (SO2), sulfuric acid (SO3), and carbonic acid (CO2) are acidic oxides. An inorganic anhydride (a somewhat archaic term) is an acid anhydride without an organic moiety.

Carburizing

Carburising, carburizing, or carburisation is a heat treatment process in which iron or steel absorbs carbon while the metal is heated in the presence of a carbon-bearing material, such as charcoal or carbon monoxide. The intent is to make the metal harder. Depending on the amount of time and temperature, the affected area can vary in carbon content. Longer carburizing times and higher temperatures typically increase the depth of carbon diffusion. When the iron or steel is cooled rapidly by quenching, the higher carbon content on the outer surface becomes hard due to the transformation from austenite to martensite, while the core remains soft and tough as a ferritic and/or pearlite microstructure.

Sabatier reaction Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. It involves the reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst to produce methane and water. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction.

Case-hardening

Case-hardening or surface hardening is the process of hardening the surface of a metal object while allowing the metal deeper underneath to remain soft, thus forming a thin layer of harder metal at the surface. For iron or steel with low carbon content, which has poor to no hardenability of its own, the case-hardening process involves infusing additional carbon or nitrogen into the surface layer. Case-hardening is usually done after the part has been formed into its final shape, but can also be done to increase the hardening element content of bars to be used in a pattern welding or similar process. The term face hardening is also used to describe this technique, when discussing modern armour.

A combination reaction (also known as a synthesis reaction) is a reaction where two or more elements or compounds (reactants) combine to form a single compound (product). Such reactions are represented by equations of the following form: X + Y → XY. The combination of two or more elements to form one compound is called combination reaction. | a) Between elements | C + O2 → CO2 | Carbon completely burnt in oxygen yields carbon dioxide |- | b) Between compounds | CaO + H2O → Ca(OH)2 | Calcium oxide (lime) combined with water gives calcium hydroxide (slaked lime) |- | c) Between elements and compounds | 2CO + O2 → 2CO2 | Oxygen combines with carbon monoxide, and carbon dioxide is formed. |}

Lithium hydride

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all organic and protic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molecular mass of slightly less than 8.0, it is the lightest ionic compound.

Direct reduced iron

Direct reduced iron (DRI), also called sponge iron, is produced from the direct reduction of iron ore to iron by a reducing gas or elemental carbon produced from natural gas or coal. Many ores are suitable for direct reduction.

In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling.

A vacuum furnace is a type of furnace in which the product in the furnace is surrounded by a vacuum during processing. The absence of air or other gases prevents oxidation, heat loss from the product through convection, and removes a source of contamination. This enables the furnace to heat materials to temperatures as high as 3,000 °C (5,432 °F) with select materials. Maximum furnace temperatures and vacuum levels depend on melting points and vapor pressures of heated materials. Vacuum furnaces are used to carry out processes such as annealing, brazing, sintering and heat treatment with high consistency and low contamination.

Nitriding

Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on high-carbon, low-alloy steels. They are also used on medium and high-carbon steels, titanium, aluminium and molybdenum. In 2015, nitriding was used to generate unique duplex microstructure, known to be associated with strongly enhanced mechanical properties.

Lithium carbide, Li
2
C
2
, often known as dilithium acetylide, is a chemical compound of lithium and carbon, an acetylide. It is an intermediate compound produced during radiocarbon dating procedures. Li
2
C
2
is one of an extensive range of lithium-carbon compounds which include the lithium-rich Li
4
C
, Li
6
C
2
, Li
8
C
3
, Li
6
C
3
, Li
4
C
3
, Li
4
C
5
, and the graphite intercalation compounds LiC
6
, LiC
12
, and LiC
18
.
Li
2
C
2
is the most thermodynamically-stable lithium-rich compound and the only one that can be obtained directly from the elements. It was first produced by Moissan, in 1896 who reacted coal with lithium carbonate.

Deoxidization is a method used in metallurgy to remove the oxygen content during steel manufacturing. In contrast, antioxidants are used for stabilization, such as in the storage of food. Deoxidation is important in the steelmaking process as oxygen is often detrimental to the quality of steel produced. Deoxidization is mainly achieved by adding a separate chemical species to neutralize the effects of oxygen or by directly removing the oxygen.

Endothermic gas

Endothermic gas is a gas that inhibits or reverses oxidation on the surfaces it is in contact with. This gas is the product of incomplete combustion in a controlled environment. An example is hydrogen gas (H2), nitrogen gas (N2), and carbon monoxide (CO). The hydrogen and carbon monoxide are reducing agents, so they work together to shield surfaces from oxidation.

References

  1. 1 2 3 4 5 6 7 Shvartsman, L.A. (1973). "Decarburization". The Great Soviet Encyclopedia (Print) (3rd ed.). New York: Macmillan.Available in English here and in the original Russian here.
  2. Alvarenga HD, Van de Putte T, Van Steenberge N, Sietsma J, Terryn H (Apr 2009). "Influence of Carbide Morphology and Microstructure on the Kinetics of Superficial Decarburization of C-Mn Steels". Metall Mater Trans A. 46: 123–133. doi:10.1007/s11661-014-2600-y.