Electro-slag remelting

Last updated
Rendering of electro-slag remelting apparatus and cross-sections ESR1 uddeholm.jpg
Rendering of electro-slag remelting apparatus and cross-sections

Electroslag remelting (ESR), also known as electro-flux remelting, is a process of remelting and refining steel and other alloys for mission-critical applications in aircraft, thermal power stations, nuclear power plants, military technology and others. [1]

Contents

The electroslag remelting (ESR) process is used to remelt and refine steels and various super-alloys, resulting in high-quality ingots. This process can be started up through vacuum induction melting. The ESR process uses the as-cast alloy as a consumable electrode. Electric current (generally AC) is passed between the electrode and the new ingot, which is formed in the bottom of a water-cooled copper mold. The new ingot is covered in an engineered slag that is superheated by the electric current. The electrode tip is slowly melted from contact with the slag. These metal droplets travel through the slag to the bottom of the water-cooled mold and slowly freeze as the ingot is directionally solidified upwards from the bottom of the mold. The slag pool floats above the refined alloy, continuously floating upwards as the alloy solidifies. The molten metal is cleaned of impurities that chemically react with the slag or otherwise float to the top of the molten pool as the molten droplets pass through the slag. [2]

Electroslag remelting uses highly reactive slags (calcium fluoride, lime, alumina, or other oxides are usually the main components) to reduce the amount of type-A sulfide present in biometal alloys. It is a common practice in European industries. ESR reduces other types of inclusions as well, and is seen as an alternative to the vacuum arc remelting (VAR) method that is prevalent in US industries.

An example of the use of the electro-slag refined (ESR) steel technique is the L30 tank gun.

CrNi60WTi is a stainless steel which is best formed by either electro-slag remelting or vacuum arc remelting. This alloy can be used for the construction of nuclear power plants. [3]

See also

Related Research Articles

Casting (metalworking) Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

Pig iron Iron alloy

Pig iron, also known as crude iron, is an intermediate product of the iron industry in the production of steel which is obtained by smelting iron ore in a blast furnace. Pig iron has a very high carbon content, typically 3.8–4.7%, along with silica and other constituents of dross, which makes it very brittle and not useful directly as a material except for limited applications.

Zone melting Purification process by moving a molten zone along a metal bar

Zone melting is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot. Zone refining was invented by John Desmond Bernal and further developed by William Gardner Pfann in Bell Labs as a method to prepare high purity materials, mainly semiconductors, for manufacturing transistors. Its first commercial use was in germanium, refined to one atom of impurity per ten billion, but the process can be extended to virtually any solute-solvent system having an appreciable concentration difference between solid and liquid phases at equilibrium. This process is also known as the float zone process, particularly in semiconductor materials processing.

Shielded metal arc welding Manual arc welding process

Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.

Ingot

An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of shaping, such as cold/hot working, cutting, or milling to produce a useful final product. Non-metallic and semiconductor materials prepared in bulk form may also be referred to as ingots, particularly when cast by mold based methods. Precious metal ingots can be used as currency, or as a currency reserve, as with gold bars.

Electric arc furnace

An electric arc furnace (EAF) is a furnace that heats charged material by means of an electric arc.

The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. The Kroll process replaced the Hunter process for almost all commercial production.

Foundry

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminium and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

Continuous casting

Continuous casting, also called strand casting, is the process whereby molten metal is solidified into a "semifinished" billet, bloom, or slab for subsequent rolling in the finishing mills. Prior to the introduction of continuous casting in the 1950s, steel was poured into stationary molds to form ingots. Since then, "continuous casting" has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardised production of a product, as well as providing increased control over the process through automation. This process is used most frequently to cast steel. Aluminium and copper are also continuously cast.

Electroslag welding

Electroslag welding(ESW) is a highly productive, single pass welding process for thick materials in a vertical or close to vertical position. (ESW) is similar to electrogas welding, but the main difference is the arc starts in a different location. An electric arc is initially struck by wire that is fed into the desired weld location and then flux is added. Additional flux is added until the molten slag, reaching the tip of the electrode, extinguishes the arc. The wire is then continuously fed through a consumable guide tube into the surfaces of the metal workpieces and the filler metal are then melted using the electrical resistance of the molten slag to cause coalescence. The wire and tube then move up along the workpiece while a copper retaining shoe that was put into place before starting is used to keep the weld between the plates that are being welded. Electroslag welding is used mainly to join low carbon steel plates and/or sections that are very thick. It can also be used on structural steel if certain precautions are observed, and for large cross-section aluminium busbars. This process uses a direct current (DC) voltage usually ranging from about 600 A and 40-50 V, higher currents are needed for thicker materials. Because the arc is extinguished, this is not an arc process.

Electrogas welding (EGW) is a continuous vertical position arc welding process developed in 1961, in which an arc is struck between a consumable electrode and the workpiece. A shielding gas is sometimes used, but pressure is not applied. A major difference between EGW and its cousin electroslag welding is that the arc in EGW is not extinguished, instead remains struck throughout the welding process. It is used to make square-groove welds for butt and t-joints, especially in the shipbuilding industry and in the construction of storage tanks.

Spray forming, also known as spray casting, spray deposition and in-situ compaction, is a method of casting near net shape metal components with homogeneous microstructures via the deposition of semi-solid sprayed droplets onto a shaped substrate. In spray forming an alloy is melted, normally in an induction furnace, then the molten metal is slowly poured through a conical tundish into a small-bore ceramic nozzle. The molten metal exits the furnace as a thin free-falling stream and is broken up into droplets by an annular array of gas jets, and these droplets then proceed downwards, accelerated by the gas jets to impact onto a substrate. The process is arranged such that the droplets strike the substrate whilst in the semi-solid condition, this provides sufficient liquid fraction to 'stick' the solid fraction together. Deposition continues, gradually building up a spray formed billet of metal on the substrate.

Eglin steel (ES-1) is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed in collaboration between the US Air Force and the Ellwood National Forge Company.

Vacuum arc remelting (VAR) is a secondary melting process for production of metal ingots with elevated chemical and mechanical homogeneity for highly demanding applications. The VAR process has revolutionized the specialty traditional metallurgical techniques industry, and has made possible incredibly controlled materials used in the biomedical, aviation, and aerospace fields.

Gloria Material Technology Corp. is a company headquartered in Liouying industrial zone, Tainan, Taiwan. It is the only specialty alloy professional manufacturer in Taiwan which owns melting, forging, rolling, heat treating and finishing processes. GMTC provides more than 500 steel grades such as superalloy, titanium alloy, ESR & VAR steel, high speed steel, stainless steel, quenched-tempered steel, tool steel, special steel profile and precision parts machining. The main product shapes are focused on round bars and square bars.

Uddeholms AB

Uddeholms AB is a multinational producer of high alloyed tool steel with production in Hagfors, Sweden. Since 1991, the company is part of the Austrian Böhler-Uddeholm group which in turn is part of the voestalpine AG group since 2007. Uddeholms AB has 800 employees in Sweden. Globally, the Uddeholm group employs 3000 people.

Dneprospetsstal, known as DSS, is a Ukrainian manufacturer of special stainless steel. The company is based in Zaporizhia in southeastern Ukraine, and was founded as a state-run enterprise in 1932. Its full name is JPrSC Electrometallurgical Works Dneprospetsstal named after A. N. Kuzmin. It is a publicly traded company.

Vacuum metallurgy

Vacuum metallurgy is that field of materials technology that deals with making, shaping, or treating metals in a controlled atmosphere, at pressures significantly less than normal atmospheric pressure. The purpose of vacuum metallurgy is to prevent contamination of metal by gases in the atmosphere. Alternatively, in some processes, a reactive gas may be introduced into the process to become part of the resultant product. Examples of vacuum metallurgy include vacuum degassing of molten steel in steelmaking operations, vacuum deposition of thin metal layers in manufacture of optics and semiconductors, vacuum casting, vacuum arc remelting of alloys, and vacuum induction melting.

USAF-96 is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed by the US Air Force at the Eglin Air Force Munitions Directorate. It uses only materials domestic to the USA. In particular it requires no tungsten.

Electrolytic iron is a form of high purity iron, obtained by electrolysis. It has a high purity greater than 99.95 % with trace elements accounting for only a millionth of a decimal.

References

  1. Roger C. Reed (2006), The Superalloys: Fundamentals and Applications, Cambridge University Press, ISBN   978-0-521-85904-2, ISBN   0521859042
  2. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA017796
  3. Jalilov, Orkhan (November 5, 2019). "US Imposes Sanctions On Iran's Construction Sphere". Caspian News.