Tank gun

Last updated
L30 gun on a Royal Scots Dragoon Guards Challenger 2 tank. Challenger 2 tank gun.jpg
L30 gun on a Royal Scots Dragoon Guards Challenger 2 tank.

A tank gun is the main armament of a tank. Modern tank guns are high-velocity, large-caliber artilleries capable of firing kinetic energy penetrators, high-explosive anti-tank, and cannon-launched guided projectiles. Anti-aircraft guns can also be mounted to tanks.

Contents

As the tank's primary armament, they are almost always employed in a direct fire mode to defeat a variety of ground targets at all ranges, including dug-in infantry, lightly armored vehicles, and especially other heavily armored tanks. They must provide accuracy, range, penetration, and rapid fire in a package that is as compact and lightweight as possible, to allow mounting in the cramped confines of an armored gun turret. Tank guns generally use self-contained ammunition, allowing rapid loading (or use of an autoloader). They often display a bulge in the barrel, which is a bore evacuator, or a device on the muzzle, which is a muzzle brake.

History

World War I

The first tanks were used to break through trench defences in support of infantry actions particularly machine gun positions during the First World War and they were fitted with machine guns or high explosive firing guns of modest calibre. These were naval or field artillery pieces stripped from their carriages and mounted in sponsons or casemates on armored vehicles.

The early British Mark I tanks of 1916 used two naval 57 mm QF 6 pounder Hotchkiss mounted either side in sponsons. These guns proved too long for use in the British tank designs as they would come into contact with obstacles and the ground on uneven terrain, and the succeeding Mark IV tank of 1917 was equipped with the shortened 6 pounder 6 cwt version which can be considered the first specialised tank gun.

The first German tank, the A7V, used British-made 57 mm Maxim-Nordenfelt fortification guns captured from Belgium and Russia, mounted singly at the front.

The early French Schneider CA1 mounted a short 75 mm gun in a sponson on the right hand side, while the Saint-Chamond mounted a standard 75 mm field gun in the nose. The thin armour of the tanks meant that such weapons were effective against other vehicles, though the Germans fielded few tanks anyway and the Allied tanks concentrated on anti-infantry and infantry support activities.

World War II

This 2-pounder (40 mm) gun, typical of early WWII designs, was adequate for destroying lightly armored early war tanks. CRW 8237.jpg
This 2-pounder (40 mm) gun, typical of early WWII designs, was adequate for destroying lightly armored early war tanks.
The long-barrelled 75 mm gun of this Panzer IV is typical of larger late WWII designs built to destroy heavily armored tanks. PzIV.Saumur.000a5s6s.jpg
The long-barrelled 75 mm gun of this Panzer IV is typical of larger late WWII designs built to destroy heavily armored tanks.

This thinking remained pervasive into the dawn of World War II, when most tank guns were still modifications of existing artillery pieces, and were expected to primarily be used against unarmored targets.[ citation needed ] The larger caliber, shorter range artillery mounting did not go away however. Tanks intended specifically for infantry support (the infantry tanks), expected to take out emplacements and infantry concentrations, carried large calibre weapons to fire large high-explosive shells—though these could be quite effective against other vehicles at close ranges. In some designs – for example, M3 Lee, Churchill, Char B1 – the larger bore weapons were mounted within the tank hull while a second gun for use against tanks was fitted in a turret.

However, other strategists saw new roles for tanks in war, and wanted more specifically developed guns tailored to these missions. The ability to destroy enemy tanks was foremost on their minds. To this end, the emerging anti-tank gun designs were modified to fit tanks. These weapons fired smaller shells, but at higher velocities with higher accuracy, improving their performance against armor. Such light guns as the QF 2-pounder (40 mm) and 37 mm equipped British cruiser tanks and infantry tanks in the late 1930s. These weapons lacked a good high-explosive shell for attacking infantry and fortifications, but were effective against the light armor of the time.

World War II saw a leapfrog growth in all areas of military technology. Battlefield experience led to increasingly powerful weapons being adopted. Guns with calibres from 20 mm to 40 mm soon gave way to 50 mm, 75 mm, 85 mm, 88 mm, 90 mm, and 122 mm calibre. In 1939, the standard German panzer had either a 20 mm or 37 mm medium-velocity weapon, but by 1945 long-barrelled 75 mm and 88 mm high-velocity guns were common. The Soviets introduced their 122 mm in a turreted heavy tank series, the IS tanks. Shells were improved to provide better penetration with harder materials and scientific shaping. All of these meant improvements in accuracy and range, although the average tank had to grow as well to carry the ammunition, mounting, and protection for these powerful guns.

While high velocity tank guns were effective against other tanks, for the most part British tanks moved to a dual purpose 75 mm gun capable of firing a useful HE shell; later in the war adding 76 mm 17pdr gun armed tanks for better antitank capability.

Many nations devised "tank destroyers" during the war – a vehicle specifically designed for anti-tank work, and armed more heavily than a tank on the same chassis could be. They generally fell into three overlapping categories: improvised modifications of old or captured tanks to render them viable again (such as converting the machine-gun-only Panzer I into the Panzerjäger I), often with haphazard, poorly protected, limited-traverse weapon mounts; the American offensive and mobile reserve model, which favoured lightly-armed open-top vehicles with a rotating turret and a powerful anti-tank-capable gun while relegating true tanks to infantry support role (exemplified by the M10 tank destroyer); and the casemate gun mount model, which often allowed the resultant vehicle to be hard to hit and have a well-sloped and heavily armoured glacis plate (for instance, the SU-100). The relative superiority in armament of tank destroyers was only relative, however: for instance, the SU-85 was a casemate-type TD on the T-34 chassis that was rendered obsolete once the basic T-34 switched from the 76 mm gun to the same 85 mm cannon, producing the T-34-85.

After World War II

Rifling on a Royal Ordnance L7 105mm tank gun Rifling.jpg
Rifling on a Royal Ordnance L7
Denel GT-2, a South African copy of the 90 mm French DEFA D921 low-pressure rifled tank gun. This was the product of recoil control experiments aimed at allowing light tanks to carry larger cannon. Baasjan4.JPG
Denel GT-2, a South African copy of the 90 mm French DEFA D921 low-pressure rifled tank gun. This was the product of recoil control experiments aimed at allowing light tanks to carry larger cannon.

By the end of the war the variety in tank designs had narrowed and the concept of the main battle tank emerged. The race to increase caliber slowed, with just slight increases between tank generations. In the West, guns of around 90 mm gave way to the ubiquitous 105 mm Royal Ordnance L7, introduced in 1958. This lasted a long while, with a shift to 120 mm in the late 1970s and early 1980s (the UK changed in the late 1960s with their Chieftain tank). In the East, the 85 mm quickly yielded to the 100 mm and 115 mm U-5TS gun, with the 125 mm caliber now standard. Most of the improvements were instead made in ammunition and fire-control systems.

With kinetic energy penetrator rounds, solid shot and armour-piercing shell gave way to armour-piercing discarding sabot (APDS) (a product of 1944), and fin-stabilized (APFSDS) rounds with tungsten or depleted uranium penetrators. Parallel developments brought rounds based on chemical energy; high-explosive squash head (HESH), and shaped-charge high-explosive anti-tank (HEAT), with penetrating power independent of muzzle velocity or range.

An M1 Abrams firing Firing M1A1 tank in Djibouti.jpg
An M1 Abrams firing
Challenger 2 after firing a high-explosive shell during a firepower demonstration. The power of tank guns can cause the ground to shake and dust to rise. Challenger 2 Firing High Explosive Shell MOD 45150011.jpg
Challenger 2 after firing a high-explosive shell during a firepower demonstration. The power of tank guns can cause the ground to shake and dust to rise.

Stadiametric range-finders were successively replaced by coincidence and laser rangefinders. Accuracy of modern tank guns is improved over earlier weapons by computerized fire-control systems, wind sensors, thermal sleeves, and muzzle referencing systems which compensate for barrel warping, wear and temperature. Fighting capability at night, in poor weather, and smoke was improved by infrared, light-intensification, and thermal imaging equipment.

Technology of the guns themselves has had only a few innovations. For decades the guns were almost exclusively rifled, but now most new tanks have smoothbore guns. Rifling in the barrel imparts spin on the projectile to stabilized it, improving ballistic accuracy. The best traditional antitank weapons have been kinetic energy rounds, whose penetrating power and accuracy is greatly decreased with the loss in muzzle velocity at extended range. For longer ranges high-explosive anti-tank rounds are more effective, but accuracy is limited; for extremely long ranges cannon-launched guided projectiles (CLGPs) are considered more accurate.[ citation needed ]

The use of the autoloader has been a development favoured by some nations and not others. Some countries adopted it as a means to keep the overall size of the tank down. Interest has also been shown as a means to protect the crew by separating them further from the gun and ammunition. For example, an autoloader allows the use of an unmanned turret in the T-14 Armata.

Smoothbore

The inside of a Rheinmetall 120 mm smoothbore tank gun (seen from the muzzle) of a Leopard 2A4 Rheinmetall 120 mm gun-inside-muzzle view PNrdeg0109.JPG
The inside of a Rheinmetall 120 mm smoothbore tank gun (seen from the muzzle) of a Leopard 2A4

In the 1960s, smoothbore tank guns were developed by the United States, the Soviet Union, and later by the experimental American-West German MBT-70 joint project.

High-precision smoothbore tank gun barrels were perfected by the US Army's Weapons Laboratory at the Watervliet Arsenal based on a pair of patents by inventor Albert L. de Graffenried. [lower-roman 1] More than 20,000 tank cannons were manufactured by the Watervliet Arsenal for the US Abrams M1A1 tank using de Graffenried's patented high-precision manufacturing inventions.

Based on their experience with the 2A28 Grom gun/missile system of the BMP-1, the Soviets produced the T-64B main battle tank, with an auto-loaded 2A46 125 mm smoothbore high-velocity tank gun, capable of firing APFSDS ammunition as well as ATGMs. Similar guns continue to be used in the latest Russian T-90, Ukrainian T-84, and Serbian M-84AS MBTs.

The German company Rheinmetall developed a more conventional 120 mm smoothbore tank gun which can fire LAHAT missiles, adopted for the Leopard 2, and later the U.S. M1 Abrams. The chief advantages of smoothbore designs are their greater suitability for fin stabilised ammunition and their greatly reduced barrel wear compared with rifled designs. Much of the difference in operation between smoothbore and rifled guns shows in the type of secondary ammunition that they fire, with a smoothbore gun being ideal for firing HEAT rounds (although specially designed HEAT rounds can be fired from rifled guns) and rifling being necessary to fire HESH rounds.

Most modern main battle tanks now carry a smoothbore gun. A notable exception are the tanks of the British Army which used the 120 mm Royal Ordnance L11A5 rifled gun until the 1990s; it was then replaced it with the 120 mm L30 rifled gun which remains in service. The Indian Arjun tank uses an Indian-developed 120 mm rifled gun.

See also

Notes

  1. US3020786A ELECTRONIC TOOL RUN-OUT INDICATOR FOR USE IN DEEP BORING OPERATIONS, Filed July 20, 1960, and US3,217,568 DEVICE FOR CONTROLLING DEEP BORING OPERATIONS IN A ROTATING OBJECT, Filed May 25, 1962.

Related Research Articles

<span class="mw-page-title-main">Rocket-propelled grenade</span> Shoulder-launched anti-tank weapon

A rocket-propelled grenade (RPG) is a shoulder-fired missile weapon that launches rockets equipped with an explosive warhead. Most RPGs can be carried by an individual soldier, and are frequently used as anti-tank weapons. These warheads are affixed to a rocket motor which propels the RPG towards the target and they are stabilized in flight with fins. Some types of RPG are reloadable with new rocket-propelled grenades, while others are single-use. RPGs are generally loaded from the front.

<span class="mw-page-title-main">8.8 cm KwK 43</span> German tank gun

The 8.8 cm KwK 43 was an 88 mm 71 calibre length tank gun designed by Krupp and used by the German Wehrmacht during the Second World War. It was mounted as the primary armament on the Panzerkampfwagen VI Ausf. B Tiger II. The 8.8 cm Pak 43, an anti-tank gun, was very similar in design but mounted on tank destroyers or deployed stand-alone on the field.

<span class="mw-page-title-main">High-explosive anti-tank</span> Type of shaped charge explosive

High-explosive anti-tank (HEAT) is the effect of a shaped charge explosive that uses the Munroe effect to penetrate heavy armor. The warhead functions by having an explosive charge collapse a metal liner inside the warhead into a high-velocity shaped charge jet; this is capable of penetrating armor steel to a depth of seven or more times the diameter of the charge. The shaped charge jet armor penetration effect is purely kinetic in nature; the round has no explosive or incendiary effect on the armor.

<span class="mw-page-title-main">Mortar (weapon)</span> Artillery weapon that launches explosive projectiles at high angles

A mortar is usually a simple, lightweight, man-portable, muzzle-loaded weapon, consisting of a smooth-bore metal tube fixed to a base plate with a lightweight bipod mount and a sight. Mortars launch explosive shells in high-arching ballistic trajectories. Mortars are typically used as indirect fire weapons for close fire support with a variety of ammunition.

<span class="mw-page-title-main">ISU-152</span> Soviet heavy assault gun

The ISU-152 is a Soviet self-propelled gun developed and used during World War II. It was unofficially nicknamed Zveroboy in response to several large German tanks and guns coming into service, including Tigers and Panthers. Since the ISU-152's gun was mounted in a casemate, aiming it was awkward, and had to be done by repositioning the entire vehicle using the tracks. Therefore, it was used as mobile artillery to support more mobile infantry and armor attacks. It continued service into the 1970s and was used in several campaigns and countries.

<span class="mw-page-title-main">Anti-materiel rifle</span> Rifle designed for use against military equipment

An anti-materiel rifle (AMR) is a rifle designed for use against military equipment, structures, and other hardware (materiel) targets. Anti-materiel rifles are chambered in significantly larger calibers than conventional rifles and are employed to eliminate equipment such as engines and unarmored or lightly armored targets. While modern armored vehicles are resistant to anti-materiel rifles, the extended range and penetration still has many modern applications. While not intended for use against human targets, the bullet weight and velocity of anti-materiel rifles gives them exceptional long-range capability even when compared with designated sniper rifles. Anti-materiel rifles are made in both bolt-action as well as semi-automatic designs.

<span class="mw-page-title-main">Smoothbore</span> Weapon that has a barrel without rifling

A smoothbore weapon is one that has a barrel without rifling. Smoothbores range from handheld firearms to powerful tank guns and large artillery mortars.

<span class="mw-page-title-main">Anti-tank gun</span> Form of artillery designed to destroy tanks and other armored fighting vehicles

An anti-tank gun is a form of artillery designed to destroy tanks and other armoured fighting vehicles, normally from a static defensive position. The development of specialized anti-tank munitions and anti-tank guns was prompted by the appearance of tanks during World War I. To destroy hostile tanks, artillerymen often used field guns depressed to fire directly at their targets, but this practice expended too much valuable ammunition and was of increasingly limited effectiveness as tank armor became thicker. The first dedicated anti-tank artillery began appearing in the 1920s, and by World War II was a common appearance in many European armies. To penetrate armor, they fired specialized ammunition from longer barrels to achieve a higher muzzle velocity than field guns. Most anti-tank guns were developed in the 1930s as improvements in tanks were noted, and nearly every major arms manufacturer produced one type or another.

<span class="mw-page-title-main">75 mm gun M2–M6</span> Standard American tank guns of the Second World War

The 75 mm gun, models M2 to M6, was the standard American medium caliber gun fitted to mobile platforms during World War II. They were primarily mounted on tanks, such as the M3 Lee and M4 Sherman, but one variant was also used as an air-to-ground gun on the B-25 Mitchell medium bomber aircraft. There were five main variants used during the war: M2, M3, M4, M5 and M6.

<span class="mw-page-title-main">T95 medium tank</span> American prototype medium tank developed from 1955 to 1959

The T95 was an American prototype medium tank developed from 1955 to 1959. These tanks used many advanced or unusual features, such as siliceous-cored armor, new transmissions, and OPTAR fire-control systems. The OPTAR incorporated an electro-optical rangefinder and was mounted on the right side of the turret, and was used in conjunction with the APFSDS-firing 90 mm T208 smoothbore gun, which had a rigid mount without a recoil system. In addition, although the tanks were designed with a torsion beam suspension, a hydropneumatic suspension was fitted, and one of the tanks was fitted with a Solar Saturn gas turbine for demonstration purposes.

<span class="mw-page-title-main">100 mm anti-tank gun T-12</span> Anti-tank gun

2A19 or T-12 is a Soviet-designed 100-mm anti-tank gun. It was the first anti-tank gun to adopt a smoothbore barrel, and to introduce modern armor piercing shot, like the APFSDS. It uses long projectiles that are more powerful than its caliber suggests. The T-12 served as the primary towed anti-tank artillery in the Soviet and Bulgarian armies from the early 1960s to the late 1980s.

<span class="mw-page-title-main">Rheinmetall Rh-120</span> Smoothbore tank gun

The Rheinmetall Rh-120 is a 120 mm smoothbore tank gun designed and produced in former West Germany by the Rheinmetall-DeTec AG company, it was developed in response to Soviet advances in armour technology and development of new armoured threats. Production began in 1974, with the first version of the gun, known as the L/44 as it was 44 calibres long, used on the German Leopard 2 tank and soon produced under license for the American M1A1 Abrams and other tanks. The 120-millimetre (4.7 in) gun has a length of 5.28 metres (17.3 ft), and the gun system weighs approximately 3,317 kilograms (7,313 lb).

<span class="mw-page-title-main">76 mm gun M1</span> American tank gun

The 76 mm gun M1 was an American World War II–era tank gun developed by the U.S United States Ordnance Department in 1942 to supplement the 75 mm gun on the basic Medium tank M4. It was also used to arm the M18 Hellcat tank destroyer.

<span class="mw-page-title-main">Armour-piercing fin-stabilized discarding sabot</span> Ammunition type for Tanks

Armour-piercing fin-stabilized discarding sabot (APFSDS), long dart penetrator, or simply dart ammunition is a type of kinetic energy penetrator ammunition used to attack modern vehicle armour. As an armament for main battle tanks, it succeeds Armour-Piercing Discarding Sabot (APDS) ammunition, which is still used in small or medium caliber weapon systems.

<span class="mw-page-title-main">8 cm PAW 600</span> Anti-tank gun

The PAW 600 was a lightweight anti-tank gun that used the high-low pressure system to fire hollow charge warheads. In 1945, it was used operationally by the Wehrmacht in small numbers. Only about 260 were produced before the war's end.

<span class="mw-page-title-main">2A28 Grom</span> Main armament of the BMP-1 and BMD-1 infantry fighting vehicles

The 2A28 Grom is the main armament of the BMP-1 and BMD-1 infantry fighting vehicles. It is a 73 mm low pressure smoothbore semi-automatic gun with a wedge breech block. Development of the 2A28 Grom was directly linked to that of the SPG-9 recoilless gun; both fired projectiles similar to rocket-propelled grenades.

<span class="mw-page-title-main">D-56T</span> Rifled antitank gun

The 76.2 mm D-56T series rifled tank gun is the tank gun used on the PT-76, which is the only known armoured vehicle to carry it.

The high–low system is a design of cannon and anti-tank warfare launcher using a smaller high-pressure chamber to store propellant. It allows a much larger projectile to be launched without the heavy equipment usually needed for large caliber weapons. When the propellant is ignited, the higher pressure gases are bled out through vents at reduced pressure to a much larger low pressure chamber to push a projectile forward. The high-low system allows the weight of the weapon and its ammunition to be reduced significantly. Production cost and time are drastically lower than for standard cannon or other small-arm weapon systems firing a projectile of the same size and weight. It has a far more efficient use of the propellant, unlike earlier recoilless weapons, where most of the propellant is expended to the rear of the weapon to counter the recoil of the projectile being fired.

<span class="mw-page-title-main">SU-152 "Taran"</span> Tank destroyer

The Object 120 SU-152 "Taran" was a fully enclosed Soviet tank destroyer built in 1965, which never progressed past the experimental stage.

<span class="mw-page-title-main">SA 49</span> Rifled tank gun

The 75 SA 49 is a French 75 mm low-recoil rifled gun specially designed to be mounted on the EBR eight-wheeled armored reconnaissance vehicle.

References

  1. Ogorkiewicz, Richard (1991). Technology of Tanks, Volume 1 (1991 ed.). Macdonald and Jane's Publishers. pp. 70–71. ISBN   978-0-7106-0595-5.