A high-explosive squash head (HESH), in British terminology, or a high-explosive plastic/plasticized (HEP), in American terminology, [1] is a type of explosive projectile with plastic explosive that conforms to the surface of a target before detonating, which improves the transfer of explosive energy to the target. Squash head projectiles are similar to high-explosive projectiles and are well suited to many of the same targets. However, while HESH projectiles are not armour-piercing, they can defeat armored targets by causing spall, which can injure or kill a vehicle's occupants or detonate some types of ammunition. [2]
External videos | |
---|---|
HESH round working principle animation on YouTube | |
HESH round comparison on YouTube |
HESH rounds are thin metal shells filled with plastic explosive and a delayed-action fuze at the base of the shell. [3] On impact, the inert material, followed by plastic explosive, is 'squashed' against the surface of the target and spreads out to form a disc or 'pat' of explosive. The inert material helps prevent premature detonation of the plastic explosive and sustains the impact pressure and temperature. [3] [2]
Milliseconds later, the base fuze detonates the explosive, creating a shock wave that, owing to its large surface area and direct contact with the target, is transmitted through the material. In the metal armour of a tank, the compression shock wave is conducted through the armour to the point where it reaches the metal-air interface (the hollow crew compartment), where some of the energy is reflected as a tension wave, a phenomenon called impulsive loading. At the point where the compression and tension waves intersect, a high-stress zone is created in the metal, causing pieces of steel to be projected off the interior wall at high velocity. [2]
This fragmentation by blast wave is known as 'scabbing' or 'spalling', with the fragments termed 'scabs or 'spall'. [4] [2]
Depending upon the armour thickness, a heavy piece of target material (4 to 10 kg (8.8 to 22.0 lb) for a 120 mm (4.7 in) round used in Arjun MBT [4] ) can separate out from the other end of the target with supersonic velocities. This spall is sufficient to permanently damage the essentials of a tank, igniting the ammunition or fuel storage and severely damaging the crew to achieve a "total kill" of the target. In general, the higher the armour thickness, the higher the scab weight will be. [2]
The fragmentation achieved by impulsive loading of armour block by a HESH round is more lethal than similar high explosive rounds. [4] [2] [ clarification needed ]
HESH rounds are mostly fired from guns with rifled, rather than smoothbore, barrels. Rifling causes a projectile to spin, thereby allowing longer projectiles to be used, while at the same time improving accuracy. This also may make a HESH shell more effective on impact by increasing the surface area of contact for the explosive: the faster the spin, the larger the resultant contact patch. HESH shells are not specifically designed to perforate the armour of vehicles, unlike high-explosive anti-tank (HEAT) rounds, with their shaped charge jets. HESH shells rely instead on transmitting a shock wave through the solid steel armor. [2] [5]
HESH ammunition has good general purpose use, being effective against most targets, though the round is generally used at relatively low velocities (generally under 800 m/s (2,600 ft/s)) because high velocity excessively disperses the pat of explosive. While only effective against tanks without spaced armour or spall liners, the round is still favoured for combat demolition purposes. The flattened high-velocity explosive pat can destroy concrete constructions much faster than a HEAT round (which is designed to penetrate armour), and without the dangerous fragmentation of a traditional high explosive (HE) fragmentation round. [3]
HESH was developed by Dennistoun Burney in the 1940s for the British war effort, originally as an anti-fortification "wallbuster" munition for use against concrete. He also led British developments in recoilless rifles as a means to deliver the shell. An early application of the HESH principle post WWII was the L9 165 mm demolition gun fitted to AVRE combat engineer vehicles. [6]
HESH was found to be surprisingly effective against metallic armour as well as concrete structures. It was widely used as a primary round in most large calibre rifled guns.
HESH rounds were fielded mainly by the British Army as the main explosive round of its main battle tanks during the Cold War. It was also used by other military forces, especially those that acquired the early post-World War II British 105 mm (4.1 in) Royal Ordnance L7A1 tank gun, including Germany, India, Israel, and Sweden.
Since the 1980s, HESH ammunition has increasingly lost favour as armour designs have trended towards layered composites of hard metal and heat-resistant materials. This type of armour conducts shock waves poorly. Anti-spalling devices (spall liners), made of materials such as Kevlar, are commonly fitted to the interior surface of modern armoured vehicles to minimise spalling effects. [7] Another reason for the declining use of HESH rounds is the preference of most armies using smoothbore guns due to the usage of powerful armour-piercing fin-stabilized discarding sabot, which would significantly decrease the rifled gun's barrel life.
British Challenger 1 and Challenger 2 tanks, and India's Arjun tank (which has the same rifled 120 mm (4.7 in) gun as the UK's MBTs) use HESH rounds as their primary ammunition. Amongst other ammunition types, the Stryker Mobile Gun System variant is to be equipped with a 105 mm (4.1 in) HESH round for demolition and bunker-busting purposes. Argentina's TAM medium tanks, Canada's Leopard C1 and Leopard C2 main battle tanks (all of which mount the same 105 mm (4.1 in) gun as the Centurion), the Australian Leopard AS1 main battle tank, and the Chinese VT-4 main battle tank (which mounts a 125 mm (4.9 in) smoothbore gun) all use HESH rounds.
HESH rounds are also carried by armoured engineer vehicles; they are typically intended for use against fortifications rather than armoured fighting vehicles. A 165 mm (6.5 in) HESH round is used by the United States Army for the main gun of the M728 combat engineer vehicle, an M60 tank equipped with a bulldozer blade. Similarly, the UK's Centurion AVRE was equipped with a short 165 mm (6.5 in) gun solely for a 29 kg (64 lb) HESH shell.
A kinetic energy penetrator (KEP), also known as long-rod penetrator (LRP), is a type of ammunition designed to penetrate vehicle armour using a flechette-like, high-sectional density projectile. Like a bullet or kinetic energy weapon, this type of ammunition does not contain explosive payloads and uses purely kinetic energy to penetrate the target. Modern KEP munitions are typically of the armour-piercing fin-stabilized discarding sabot (APFSDS) type.
Armour-piercing ammunition (AP) is a type of projectile designed to penetrate armour protection, most often including naval armour, body armour, and vehicle armour.
The 8.8 cm KwK 43 was an 88 mm 71-calibre-length tank gun designed by Krupp and used by the German Wehrmacht during the Second World War. It was mounted as the primary armament on the Panzerkampfwagen VI Ausf. B Tiger II. The 8.8 cm Pak 43, an anti-tank gun, was very similar in design but mounted on tank destroyers or deployed stand-alone on the field.
High-explosive anti-tank (HEAT) is the effect of a shaped charge explosive that uses the Munroe effect to penetrate heavy armor. The warhead functions by having an explosive charge collapse a metal liner inside the warhead into a high-velocity shaped charge jet; this is capable of penetrating armor steel to a depth of seven or more times the diameter of the charge. The shaped charge jet armor penetration effect is purely kinetic in nature; the round has no explosive or incendiary effect on the armor.
Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure. Spalling and spallation both describe the process of surface failure in which spall is shed.
A mortar today is usually a simple, lightweight, man-portable, muzzle-loaded cannon, consisting of a smooth-bore metal tube fixed to a base plate with a lightweight bipod mount and a sight. Mortars are typically used as indirect fire weapons for close fire support with a variety of ammunition. Historically mortars were heavy siege artillery. Mortars launch explosive shells in high-arching ballistic trajectories.
A shell, in a military context, is a projectile whose payload contains an explosive, incendiary, or other chemical filling. Originally it was called a bombshell, but "shell" has come to be unambiguous in a military context. A shell can hold a tracer.
Armour-piercing discarding sabot (APDS) is a type of spin-stabilized kinetic energy projectile for anti-armour warfare. Each projectile consists of a sub-calibre round fitted with a sabot. The combination of a lighter sub-calibre projectile with a full-calibre propellant charge allows for an increase in muzzle velocity compared to full-calibre rounds, giving the round increased armour-penetration performance. To further enhance their armour-penetration capabilities, APDS rounds typically feature a hardened core made from tungsten or another hard, dense material.
A tank gun is the main armament of a tank. Modern tank guns are high-velocity, large-caliber artilleries capable of firing kinetic energy penetrators, high-explosive anti-tank, and cannon-launched guided projectiles. Anti-aircraft guns can also be mounted to tanks.
The 75 mm gun, models M2 to M6, was the standard American medium caliber gun fitted to mobile platforms during World War II. They were primarily mounted on tanks, such as the M3 Lee and M4 Sherman, but one variant was also used as an air-to-ground gun on the B-25 Mitchell medium bomber aircraft. There were five main variants used during the war: M2, M3, M4, M5 and M6.
The following is a list of ammunition fired by the 125 mm smoothbore gun series used in the T-64, T-72, T-80, M-84, T-90, PT-91, T-14 Armata, and other tanks derived from those designs, as well as the 2A45 Sprut anti-tank gun.
The Rheinmetall Rh-120 is a 120 mm smoothbore tank gun designed and produced in former West Germany by the Rheinmetall Waffe Munition GmbH company, it was developed in response to Soviet advances in armour technology and development of new armoured threats. Production began in 1974, with the first version of the gun, known as the L/44 as it was 44 calibres long, used on the German Leopard 2 tank and soon produced under license for the American M1A1 Abrams and other tanks. The 120-millimetre (4.7 in) gun has a length of 5.28 metres (17.3 ft), and the gun system weighs approximately 3,317 kilograms (7,313 lb).
The Ordnance QF 75 mm, abbreviated to OQF 75 mm, was a British tank gun of the Second World War. It was obtained by boring out the Ordnance QF 6-pounder 57 mm anti-tank gun to 75 mm, to give better performance against infantry targets similarly to the 75 mm M3 gun fitted to the American Sherman tank. The QF came from "quick-firing", referring to the use of ammunition where the shell has a fixed cartridge. The gun was also sometimes known as ROQF from Royal Ordnance Quick-Firing.
Armour with two or more plates spaced a distance apart falls under the category of spaced armour. Spaced armour can be sloped or unsloped. When sloped, it reduces the penetrating power of bullets and solid shot, as after penetrating each plate projectiles tend to tumble, deflect, deform, or disintegrate; spaced armour that is not sloped is generally designed to provide protection from explosive projectiles, which detonate before reaching the primary armour. Spaced armour is used on military vehicles such as tanks and combat bulldozers. In a less common application, it is used in some spacecraft that use Whipple shields.
Armour-piercing, capped, ballistic capped (APCBC) is a type of configuration for armour-piercing ammunition introduced in the 1930s to improve the armour-piercing capabilities of both naval and anti-tank guns. The configuration consists of an armour-piercing shell fitted with a stubby armour-piercing cap for improved penetration properties against surface hardened armour, especially at high impact angles, and an aerodynamic ballistic cap on top of the AP cap to correct for the poorer aerodynamics, especially higher drag, otherwise created by the stubby AP cap. These features allow APCBC shells to retain higher velocities and to deliver more energy to the target on impact, especially at long range when compared to uncapped shells.
In warfare, high-explosive incendiary (HEI) is a type of ammunition specially designed to impart energy and therefore damage to its target in one or both of two ways: via a high-explosive charge and/or via its incendiary (fire-causing) effects. Each round has both capabilities.
The L30A1, officially designated Gun, 120 mm, Tank L30,is a British-designed 120 mm rifled tank gun, installed in the turrets of Challenger 2 main battle tanks. It is an improved production model of the Royal Ordnance L11 series of rifled tank guns. Challenger 2 tanks and their L30A1 guns are operated by the British and Omani armies. In 2023, L30A1 armed Challenger 2 tanks supplied by the British were delivered to Ukraine.
The Proof and Experimental Establishment (PXE) is an Indian defence laboratory of the Defence Research and Development Organisation (DRDO). Located in Balasore, Orissa, India. its main purpose concerns the research and development of technologies and products in the area of medium and large caliber weapons and their ammunition. PXE is organised under the Armament and Combat Engineering Cluster of DRDO.
The Royal Ordnance L11A5, officially designated Gun, 120 mm, Tank L11, is a 120 mm L/55 rifled tank gun design. It was the second 120 mm calibre tank gun in service with British Army. It was the first of NATO's 120 mm main battle tank guns which became the standard calibre for Western tanks in the later period of the Cold War. A total of 3,012 of the L11 guns were produced by 2005. The list price was US$227,000 in 1990.
The 2A28 Grom also known as KBP 2A28 Grom, is the main armament of the Soviet-designed BMP-1 and BMD-1 infantry fighting vehicles. It is a 73 mm low pressure smoothbore semi-automatic gun with a wedge breech block. Development of the 2A28 Grom was directly linked to that of the SPG-9 recoilless gun; both fired projectiles similar to rocket-propelled grenades.
{{cite journal}}
: CS1 maint: DOI inactive as of January 2024 (link) CS1 maint: multiple names: authors list (link)