A main battle tank (MBT), also known as a battle tank or universal tank or simply tank, [1] is a tank that fills the role of armour-protected direct fire and maneuver in many modern armies. Cold War-era development of more powerful engines, better suspension systems and lighter composite armour allowed for the design of a tank that had the firepower of a super-heavy tank, the armour protection of a heavy tank, and the mobility of a light tank, in a package with the weight of a medium tank. The first designated MBT was the British Chieftain tank, which during its development in the 1950s was re-designed as an MBT. [a] Throughout the 1960s and 1970s, the MBT replaced almost all other types of tanks, leaving only some specialist roles to be filled by lighter designs or other types of armoured fighting vehicles.
Main battle tanks are a key component of modern armies. [3] Modern MBTs seldom operate alone, as they are organized into armoured units that include the support of infantry, who may accompany the tanks in infantry fighting vehicles. They are also often supported by surveillance or ground-attack aircraft. [4] The average weight of MBTs varies from country to country. The average weight of Western MBTs is usually greater than that of Russian or Chinese MBTs.
During World War I, combining tracks, armour, and guns into a functional vehicle pushed the limits of mechanical technology. This limited the specific battlefield capabilities any one tank design could be expected to fulfill. A design might have good speed, armour, or firepower, but not all three together.
Facing the deadlock of trench warfare, the first tank designs focused on crossing wide trenches, requiring very long and large vehicles, such as the British Mark I tank and successors; these became known as heavy tanks. Tanks that focused on other combat roles were smaller, like the French Renault FT; these were light tanks or tankettes. Many late-war and inter-war tank designs diverged from these according to new, and mostly untried, concepts for future tank roles and tactics. Each nation tended to create its own list of tank classes with different intended roles, such as "cavalry tanks", "breakthrough tanks", "fast tanks", and "assault tanks". The British maintained cruiser tanks that in order to achieve high speed and hence manoeuvrability in the attack carried less armour, and infantry tanks which operating at infantryman pace could carry more armour.
After years of isolated and divergent development, the various interwar tank concepts were finally tested with the start of World War II. In the chaos of blitzkrieg, tanks designed for a single role often found themselves forced into battlefield situations they were ill-suited for. During the war, limited-role tank designs tended to be replaced by more general-purpose designs, enabled by improving tank technology. Tank classes became mostly based on weight (and the corresponding transport and logistical needs). This led to new definitions of heavy and light tank classes, with medium tanks covering the balance of those between. The German Panzer IV tank, designed before the war as a "heavy" tank for assaulting fixed positions, was redesigned during the war with armour and gun upgrades to allow it to take on anti-tank roles as well, and was reclassified as a medium tank.
The second half of World War II saw an increased reliance on general-purpose medium tanks, which became the bulk of the tank combat forces. Generally, these designs massed about 25–30 t (25–30 long tons; 28–33 short tons), were armed with cannons around 75 mm (3.0 in), and powered by engines in the 400–500 hp (300–370 kW) range. Notable examples include the Soviet T-34 (the most-produced tank at that time) and the US M4 Sherman.
Late war tank development placed increased emphasis on armour, armament, and anti-tank capabilities for medium tanks:
Britain had continued on the path of parallel development of cruiser tanks and infantry tanks. Development of the Rolls-Royce Meteor engine for the Cromwell tank, combined with efficiency savings elsewhere in the design, almost doubled the horsepower for cruiser tanks. [12] This led to speculation of a "Universal Tank", able to take on the roles of both a cruiser and an infantry tank by combining heavy armour and manoeuvrability. [13] [ page needed ]
Field Marshal Bernard Montgomery is acknowledged as the main advocate of the British universal tank concept as early as 1943, according to the writings of Giffard Le Quesne Martel, but little progress was made beyond development of the basic Cromwell cruiser tank that eventually led to the Centurion. [1] [14] The Centurion, at the time designated "heavy cruiser" and later "medium gun tank" [15] was designed for mobility and firepower at the expense of armour[ citation needed ], but more engine power permitted more armour protection, so the Centurion could also operate as an infantry tank, doing so well that development of a new universal tank was rendered unnecessary.
The Centurion, entering service just as World War II finished, was a multi-role tank that subsequently formed the main armoured element of the British Army of the Rhine, the armed forces of the British Empire and Commonwealth forces, and subsequently many other nations through exports, whose cost was met largely by the US. The introduction of the 84 mm (3.3 in) 20-pounder gun in 1948 gave the tank a significant advantage over other tanks of the era, [16] paving the way for a new tank classification, the main battle tank, which gradually superseded previous weight and armament classes.
A surplus of effective WWII-era designs in other forces, notably the US and the Soviet Union, led to slower introductions of similar designs on their part. By the early 1950s, these designs were clearly no longer competitive, especially in a world of shaped charge weapons, and new designs rapidly emerged from most armed forces.
The Quebec conference in 1957 between the US, UK and Canada identified the MBT as the route for development rather than separate medium and heavy tanks. [17]
The concept of the medium tank gradually evolved into the MBT in the 1960s, [18] as it was realized that medium tanks could carry guns (such as the American 90 mm (3.5 in), Soviet 100 mm (3.9 in), and especially the British L7 105 mm (4.1 in)) that could penetrate any practical level of armour then existing at long range. Also, the heaviest tanks were unable to use most existing bridges. The World War II concept of heavy tanks, armed with the most powerful guns and heaviest armour, became obsolete because the large tanks were too expensive and just as vulnerable to damage by mines, bombs, rockets, and artillery. Likewise, World War II had shown that lightly armed and armoured tanks were of limited value in most roles. Even reconnaissance vehicles had shown a trend towards heavier weight and greater firepower during World War II; speed was not a substitute for armour and firepower.
An increasing variety of anti-tank weapons and the perceived threat of a nuclear war prioritized the need for additional armour. The additional armour prompted the design of even more powerful guns. [19] The main battle tank thus took on the role the British had once called the "universal tank", exemplified by the Centurion, filling almost all battlefield roles. Typical main battle tanks were as well armed as any other vehicle on the battlefield, highly mobile, and well armoured. Yet they were cheap enough to be built in large numbers. The first Soviet main battle tank was the T-64A [20] (the T-54/55 and T-62 were considered "medium" tanks) [21] and the first American nomenclature-designated MBT was the M60 tank. [22]
Anti-tank weapons rapidly outpaced armour developments. By the 1960s, anti-tank rounds could penetrate a meter of steel so as to make the application of traditional rolled homogeneous armour unpragmatic. The first solution to this problem was the composite armor of Soviet T-64 tank, which included steel-glass-reinforced textolite-steel sandwich in heavily sloped glacis plates, and steel turret with aluminum inserts, which helped to resist both high-explosive anti-tank (HEAT) and APDS shells of the era. Later came British Chobham armour. This composite armour used layers of ceramics and other materials to help attenuate the effects of HEAT munitions. Another threat came by way of the widespread use of helicopters in battle. Before the advent of helicopters, armour was heavily concentrated to the front of the tank. This new threat caused designs to distribute armour on all sides of the tank (also having the effect of protecting the vehicle's occupants from nuclear explosion radiation). [23]
By the late 1970s, MBTs were manufactured by China, France, West Germany, Britain, India, Italy, Japan, the Soviet Union, Sweden, Switzerland, and the United States. [24]
The Soviet Union's war doctrine depended heavily on the main battle tank. Any weapon advancement making the MBT obsolete could have devastated the Soviet Union's fighting capability. [25] The Soviet Union made novel advancements to the weapon systems including mechanical autoloaders and anti-tank guided missiles. Autoloaders were introduced to replace the human loader, permitting the turret to be reduced in size, making the tank smaller and less visible as a target, [19] while missile systems were added to extend the range at which a vehicle could engage a target and thereby enhance the first-round hit probability. [19]
The United States's experience in the Vietnam War contributed to the idea among army leadership that the role of the main battle tank could be fulfilled by attack helicopters. During the Vietnam War, helicopters and missiles competed with MBTs for research money. [26]
Though the Persian Gulf War reaffirmed the role of main battle tanks,[ clarification needed ] MBTs were outperformed by the attack helicopter. [27] Other strategists considered that the MBT was entirely obsolete in light of the efficacy and speed with which coalition forces neutralized Iraqi armour. [28]
In asymmetric warfare, threats such as improvised explosive devices and mines have proven effective against MBTs. In response, nations that face asymmetric warfare, such as Israel, are reducing the size of their tank fleet and procuring more advanced models. [29] [30] Conversely, some insurgent groups like Hezbollah themselves operate main battle tanks, such as the T-72.[ citation needed ]
The United States Army used 1,100 M1 Abrams in the course of the Iraq War. They proved to have an unexpectedly high vulnerability to improvised explosive devices. [31] A relatively new type of remotely detonated mine, the explosively formed penetrator, was used with some success against American armoured vehicles. However, with upgrades to their rear armour, M1s proved to be valuable in urban combat; at the Second Battle of Fallujah the United States Marines brought in two extra companies of M1s. [32] Britain deployed its Challenger 2 tanks to support its operations in southern Iraq.
Advanced armour has reduced crew fatalities but has not improved vehicle survivability. [33] Small unmanned turrets on top of the cupolas called remote controlled weapon stations armed with machine guns or mortars provide improved defence and enhance crew survivability. Experimental tanks with unmanned turrets locate crew members in the heavily armoured hull, improving survivability and reducing the vehicle's profile. [34]
Technology is reducing the weight and size of the modern MBT. [35] A British military document from 2001 indicated that the British Army would not procure a replacement for the Challenger 2 because of a lack of conventional warfare threats in the foreseeable future. The obsolescence of the tank has been asserted, but the history of the late 20th and early 21st century suggested that MBTs were still necessary. [36] During the Russian invasion of Ukraine, Western and Russian MBTs saw large-scale combat in large numbers.
The Organization for Security and Co-operation in Europe defines a main battle tank as "a self-propelled armoured fighting vehicle, capable of heavy firepower, primarily of a high muzzle velocity direct fire main gun necessary to engage armoured and other targets, with high cross-country mobility, with a high level of self-protection, and which is not designed and equipped primarily to transport combat troops." [37]
|
Originally, most MBTs relied on steel armour to defend against various threats. As newer threats emerged, however, the defensive systems used by MBTs had to evolve to counter them. One of the first new developments was the use of explosive reactive armour (ERA), developed by Israel in the early 1980s to defend against the shaped-charge warheads of modern anti-tank guided missiles and other such high-explosive anti-tank (HEAT) projectiles. This technology was subsequently adopted and expanded upon by the United States and the Soviet Union.
MBT armour is concentrated at the front of the tank, where it is layered up to 33 centimetres (13 in) thick. [38]
Missiles are cheap and cost-effective anti-tank weapons. [39] ERA can be quickly added to vehicles to increase their survivability. However, the detonation of ERA blocks creates a hazard to any supporting infantry near the tank. Despite this drawback, it is still employed on many Russian MBTs, the latest generation Kontakt-5 being capable of defeating both high-explosive anti-tank (HEAT) and kinetic energy penetrator threats. The Soviets also developed Active Protection Systems (APS) designed to more actively neutralize hostile projectiles before they could even strike the tank, namely the Shtora and Arena systems. The United States has also adopted similar technologies in the form of the Missile Countermeasure Device and as part of the Tank Urban Survival Kit used on M1 Abrams tanks serving in Iraq. The latest Russian MBT, according to many forum members[ citation needed ] the T-14 Armata, incorporates an AESA radar as part of its Afghanit APS and in conjunction with the rest of its armament, can also intercept aircraft and missiles. [40] [41]
MBTs can also be protected from radar detection by incorporating stealth technology. The T-14 Armata has a turret designed to be harder to detect with radars and thermal sights. [42] Advanced camouflage, like the Russian Nakidka, will also reduce the radar and thermal signatures of a MBT. [43]
Other defensive developments focused on improving the strength of the armour itself; one of the notable advancements coming from the British with the development of Chobham armour in the 1970s. It was first employed on the American M1 Abrams and later the British Challenger 1. Chobham armour uses a lattice of composite and ceramic materials along with metal alloys to defeat incoming threats, and proved highly effective in the conflicts in Iraq in the early 1990s and 2000s; surviving numerous impacts from 1950s, 1960s, and 1970s era rocket-propelled grenades with negligible damage. It is much less efficient against later models of RPGs. For example, the RPG-29 from the 1980s is able to penetrate the frontal hull armour of the Challenger 2. [44]
Main battle tanks are equipped with a main gun and at least one machine gun.
MBT main guns are generally between 100 mm (3.9 in) and 125 mm (4.9 in) caliber, and can fire both anti-armour and, more recently, anti-personnel rounds. The cannon serves a dual role, able to engage other armoured targets such as tanks and fortifications, and soft targets such as light vehicles and infantry. It is fixed to the turret, along with the loading and fire mechanism. Modern tanks use a sophisticated fire-control system, including rangefinders, computerized fire control, and stabilizers, which are designed to keep the cannon stable and aimed even if the hull is turning or shaking, making it easier for the operators to fire on the move and/or against moving targets. Gun-missile systems are complicated and have been particularly unsatisfactory to the United States who abandoned gun-missile projects such as the M60A2 and MBT-70, [45] but have been diligently developed by the Soviet Union, who even retrofitted them to T-55 tanks, in an effort to double the effective range of the vehicle's fire. The MBT's role could be compromised because of the increasing distances involved and the increased reliance on indirect fire. [34] The tank gun is still useful in urban combat for precisely delivering powerful fire while minimizing collateral damage. [28]
High-explosive anti-tank (HEAT), and some form of high velocity kinetic energy penetrator, such as armour-piercing fin-stabilized discarding sabot (APFSDS) rounds are carried for anti-armour purposes. Anti-personnel rounds such as high explosive or high explosive fragmentation have dual purpose. Less common rounds are Beehive anti-personnel rounds, and high-explosive squash head (HESH) rounds used for both anti-armour and bunker busting. Usually, an MBT carries 30–50 rounds of ammunition for its main tank gun, usually split between HE, HEAT, and KEP rounds. Some MBTs may also carry smoke or white phosphorus rounds. Some MBTs are equipped with an autoloader, such as the French Leclerc, or the Russian/Ukrainian T-64, T-72, T-80, T-84, T-90, and T-14 and, for this reason, the crew can be reduced to 3 members. MBTs with an autoloader require one less crew member and the autoloader requires less space than its human counterpart, allowing for a reduction in turret size. Further, an autoloader can be designed to handle rounds which would be too difficult for a human to load. [46] This reduces the silhouette which improves the MBT's target profile. However, with a manual loader, the rounds can be isolated within a blowout chamber, rather than a magazine within the turret, which could improve crew survivability. However, the force of a modern depleted uranium APFSDS round at the muzzle can exceed 6000 kN (a rough estimate, considering a uranium 60 cm/2 cm rod, 19g/cm3, @ 1,750 m/s). Composite+reactive armour could withstand this kind of force through its deflection and deformation, but with a second hit in the same area, an armour breach is inevitable. As such, the speed of follow up shots is crucial within tank to tank combat. [47]
As secondary weapons, an MBT usually uses between two and four machine guns to engage infantry and light vehicles. Many MBTs mount one heavy caliber anti-aircraft machine gun (AAMG), usually of .50 caliber (like the M2 Browning or DShK), which can be used against helicopters and low flying aircraft. However, their effectiveness is limited in comparison to dedicated anti-aircraft artillery. The tank's machine guns are usually equipped with between 500 and 3,000 rounds each.
Performing situational awareness and communicating is one of four primary MBT functions. [48] For situational awareness, the crew can use a circular review system combining augmented reality and artificial Intelligence technologies. [49] These systems use several externally mounted video sensors to transfer a 360º view of the tank's surroundings onto crew helmet-mounted displays or other display systems.
MBTs, like previous models of tanks, move on continuous tracks, which allow a decent level of mobility over most terrain including sand and mud. They also allow tanks to climb over most obstacles. MBTs can be made water-tight, so they can even dive into shallow water (5 m (16 ft) with snorkel). However, tracks are not as fast as wheels; the maximum speed of a tank is about 65 km/h (40 mph) [b] . The extreme weight of vehicles of this type 40–70 t (39–69 long tons; 44–77 short tons) also limits their speed. They are usually equipped with a 1,200–1,500 hp (890–1,120 kW) engine (more than 25,000 cc (1,526 cu in)), with an operational range near 500 km (310 mi).
The German Army has prioritized mobility in its Leopard 2 which is considered one of the fastest MBTs in existence. [39]
The MBT is often cumbersome in traffic and frequently obstructs the normal flow of traffic. The tracks can damage some roads after repeated use. Many structures like bridges do not have the load capacity to support an MBT. In the fast pace of combat, it is often impossible to test the sturdiness of these structures. Though appreciated for its excellent off-road characteristics, the MBT can become immobilized in muddy conditions.
The high cost of MBTs can be attributed in part to the high-performance engine-transmission system and to the fire control system. Also, propulsion systems are not produced in high enough quantities to take advantage of economies of scale. [50]
Crew fatigue limits the operational range of MBTs in combat. Reducing the crew to three and relocating all crewmembers from the turret to the hull could provide time to sleep for one off-shift crewmember located in the rear of the hull. In this scenario, crewmembers would rotate shifts regularly and all would require cross-training on all vehicle job functions. [51] Cargo aircraft are instrumental to the timely deployment of MBTs. The absence of sufficient numbers of strategic airlift assets can limit the rate of MBT deployments to the number of aircraft available. [52]
Military planners anticipate that the airlift capability for MBTs will not improve in the future. [53] To date, no helicopter has the capability to lift MBTs. [28] Rail and road are heavily used to move MBTs nearer to the battle, ready to fight in prime condition. [53] Where well maintained roads allow it, wheeled tank transporters can be used. [54]
The task of resupply is usually accomplished with large trucks. [55]
Main battle tanks have internal and external storage space. Internal space is reserved for ammunition. External space enhances independence of logistics and can accommodate extra fuel and some personal equipment of the crew. [56]
The Israeli Merkava can accommodate crew members displaced from a destroyed vehicle in its ammunition compartment. [51]
This section needs expansion. You can help by adding to it. (March 2021) |
Emphasis is placed on selecting and training main battle tank crew members. The crew must perform their tasks faultlessly and harmoniously so commanders select teams taking into consideration personalities and talents. [28]
The main battle tank fulfills the role the British had once called the "universal tank", filling almost all battlefield roles. They were originally designed in the Cold War to combat other MBTs. [34] The modern light tank supplements the MBT in expeditionary roles and situations where all major threats have been neutralized and excess weight in armour and armament would only hinder mobility and cost more money to operate.
Reconnaissance by MBTs is performed in high-intensity conflicts where reconnaissance by light vehicles would be insufficient due to the necessity to "fight" for information. [53]
In asymmetric warfare, main battle tanks are deployed in small, highly concentrated units. MBTs fire only at targets at close range and instead rely on external support such as unmanned aircraft for long range combat. [57]
Main battle tanks have significantly varied characteristics. Procuring too many varieties can place a burden on tactics, training, support and maintenance. [58]
The MBT has a positive morale effect on the infantry it accompanies. [59] It also instills fear in the opposing force who can often hear and even feel their arrival. [28]
MBT production is increasingly being outsourced to wealthy nations. Countries that are just beginning to produce tanks are having difficulties remaining profitable in an industry that is increasingly becoming more expensive through the sophistication of technology. Even some large-scale producers are seeing declines in production. Even China is divesting many of its MBTs. [53]
The production of main battle tanks is limited to manufacturers that specialize in combat vehicles. Commercial manufacturers of civilian vehicles cannot easily be repurposed as MBT production facilities. [60]
Prices for MBTs have more than tripled from 1943 to 2011, although this pales in comparison with the price increase in fighter aircraft from 1943 to 1975. [34]
This section needs expansion. You can help by adding to it. (April 2011) |
Several MBT models, such as the AMX-40 and OF-40, were marketed almost solely as export vehicles. [53] Several tank producers, such as Japan and Israel, choose not to market their creations for export. [53] Others have export control laws in place.
An armoured fighting vehicle or armored fighting vehicle (AFV) is an armed combat vehicle protected by armour, generally combining operational mobility with offensive and defensive capabilities. AFVs can be wheeled or tracked. Examples of AFVs are tanks, armoured cars, assault guns, self-propelled artilleries, infantry fighting vehicles (IFV), and armoured personnel carriers (APC).
A tank destroyer, tank hunter or tank killer is a type of armoured fighting vehicle, predominantly intended for anti-tank duties. They are typically armed with a direct fire artillery gun, also known as a self-propelled anti-tank gun, or missile launcher, also called an anti-tank missile carrier. The vehicles are designed specifically to engage and destroy enemy tanks, often with limited operational capacities.
A tank is an armoured fighting vehicle intended as a primary offensive weapon in front-line ground combat. Tank designs are a balance of heavy firepower, strong armour, and battlefield mobility provided by tracks and a powerful engine; their main armament is often mounted within a turret. They are a mainstay of modern 20th and 21st century ground forces and a key part of combined arms combat.
The T-80 is a main battle tank (MBT) that was designed and manufactured in the former Soviet Union and manufactured in Russia. The T-80 is based on the T-64, while incorporating features from the later T-72 and changing the engine to a gas turbine. When it entered service in 1976, it was the first production tank to be powered solely by turbine.
A high-explosive squash head (HESH), in British terminology, or a high-explosive plastic/plasticized (HEP), in American terminology, is a type of explosive projectile with plastic explosive that conforms to the surface of a target before detonating, which improves the transfer of explosive energy to the target. Squash head projectiles are similar to high-explosive projectiles and are well suited to many of the same targets. However, while HESH projectiles are not armour-piercing, they can defeat armored targets by causing spall, which can injure or kill a vehicle's occupants or detonate some types of ammunition.
The SU-152 is a Soviet self-propelled heavy howitzer used during World War II.
The Leclerc is a third-generation French main battle tank developed and manufactured by Nexter Systems. It was named in honour of Marshal Philippe Leclerc de Hauteclocque, a commander of the Free French Forces, who led the 2nd Armoured Division in World War II.
The Type 59 main battle tank is a Chinese-produced version of the Soviet T-54A tank, an early model of the ubiquitous T-54/55 series. The first vehicles were produced in 1958 and it was accepted into service in 1959, with serial production beginning in 1963. Over 9,500 of the tanks were produced by the time production ended in 1985 with approximately 5,500 serving with the Chinese armed forces. The tank formed the backbone of the Chinese People's Liberation Army armoured units until the early 2000s, with an estimated 5,000 of the later Type 59-I and Type 59-II variants in service in 2002.
The cruiser tank was a British tank concept of the interwar period for tanks designed as modernised armoured and mechanised cavalry, as distinguished from infantry tanks. Cruiser tanks were developed after medium tank designs of the 1930s failed to satisfy the Royal Armoured Corps. The cruiser tank concept was conceived by Giffard Le Quesne Martel, who preferred many small light tanks to swarm an opponent, instead of a few expensive and unsatisfactory medium tanks. "Light" cruiser tanks carried less armour and were correspondingly faster, whilst "heavy" cruiser tanks had more armour and were slightly slower.
A heavy tank is a tank classification produced from World War I to the end of the Cold War. These tanks generally sacrificed mobility and maneuverability for better armour protection and equal or greater firepower than tanks of lighter classes.
Tank classification is a taxonomy of identifying either the intended role or weight class of tanks. The classification by role was used primarily during the developmental stage of the national armoured forces, and referred to the doctrinal and force structure utility of the tanks based on design emphasis. The weight classification is used in the same way truck classification is used, and is intended to accommodate logistic requirements of the tanks.
Armoured warfare or armored warfare, is the use of armoured fighting vehicles in modern warfare. It is a major component of modern methods of war. The premise of armored warfare rests on the ability of troops to penetrate conventional defensive lines through use of manoeuvre by armoured units.
Tanks were initially deployed in World War I, engineered to overcome the deadlock of trench warfare. Between the two world wars, tanks were further developed. Although they had demonstrated their battlefield effectiveness, only a few nations had the industrial resources to design and build them. During and after World War I, Britain and France pioneered tank technology, with their models generally serving as a blueprint for other countries. However, this initial advantage would slowly diminish during the 1930s, shifting in favor of the Soviet Union and, to a lesser degree, Nazi Germany.
Tank development both evolved considerably from World War II and played a key role during the Cold War (1947–1991). The period pitted the nations of the Eastern Bloc and the North Atlantic Treaty Organization (NATO) against each other.
A light tank is a tank variant initially designed for rapid movements in and out of combat, to outmaneuver heavier tanks. It is smaller with thinner armor and a less powerful main gun, tailored for better tactical mobility and ease of transport and logistics. They are primarily employed in the screening, armored reconnaissance, skirmishing, artillery observation, and supplementing landing operations in a fire support role of expeditionary forces where larger, heavier tanks are unavailable or have difficulties operating safely or efficiently.
This article deals with the history and development of tanks of the Soviet Union and its successor state, the Russian Federation; from their first use after World War I, into the interwar period, during World War II, the Cold War and modern era.
This article on military tanks deals with the history and development of tanks of the British Army from their first use in the First World War, the interwar period, during the Second World War, the Cold War and modern era.
The post–Cold War era is the period in world history from the collapse of the Soviet Union on December 27, 1991 to the present. During the Cold War, the Soviet domination of the Warsaw Pact led to effective standardization on a few tank designs. In comparison, France, Germany, the United States, and the United Kingdom had previously developed their own tank designs, but now tried to standardize their designs, while the smaller nations of NATO purchased or adapted these designs.
The FV4601 MBT-80 was a British experimental third-generation main battle tank, designed in the late 1970s to replace the Chieftain tank. It was eventually cancelled in favour of the Challenger 1, itself an evolution of the Chieftain design.
Pitting a traditional combined armed force trained and equipped to defeat similar military organisations against insurgents reminds one of a pile driver attempting to crush a fly, indefatigably persisting in repeating its efforts.[ full citation needed ]
Main battle tank.
Beyond Asia's large militaries, the broader proliferation of tanks makes sense given the security needs of states with relatively weaker militaries. Naval and amphibious warfare focused states such as Japan and Indonesia are acquiring new tanks to build capacity in land warfare (urban warfare in Japan's case). Bangladesh, as a developing nation, is acquiring cheaper Chinese MBTs for similar reasons. None of these states expect to use these tanks for an expeditionary purpose, or even against a foreign invader. MBTs can play an important role in maintaining internal security.