Composite armour

Last updated
The Soviet T-64 was the first mass-produced tank with composite armour Soviet T-64.JPEG
The Soviet T-64 was the first mass-produced tank with composite armour
The Leclerc tank is equipped with NERA (Non-explosive reactive armour) Leclerc-openphotonet PICT5993.JPG
The Leclerc tank is equipped with NERA (Non-explosive reactive armour)
Depending on the operating state, the Leopard 2 has various extended armour elements such as bomb protection for the top, cage armour, extended mine protection (A6M) or additional armour in the form of composite armour MEXAS or AMAP Leopard 2 A5 der Bundeswehr.jpg
Depending on the operating state, the Leopard 2 has various extended armour elements such as bomb protection for the top, cage armour, extended mine protection (A6M) or additional armour in the form of composite armour MEXAS or AMAP
Plasan SandCat light (5t) military vehicle featuring integrated composite armoured body Plasan SandCat.jpg
Plasan SandCat light (5t) military vehicle featuring integrated composite armoured body
Vehicle add-on armour kit manufactured by Composhield Add-on kit.png
Vehicle add-on armour kit manufactured by Composhield
The British Army's Challenger 2 main battle tank uses Chobham armour. Challenger2-Bergen-Hohne-Training-Area-2.jpg
The British Army's Challenger 2 main battle tank uses Chobham armour.
Ceramic-aramid composite laminate armour, ballistic test results IDET2007 composite armor ballistic test.jpg
Ceramic-aramid composite laminate armour, ballistic test results
Ceramic tiles for the ATF Dingo IDET2007 ceramic armor tiles.jpg
Ceramic tiles for the ATF Dingo
SICADUR silicon carbide tiles for vehicles (e.g. Mowag Piranha) IDET2007 ceramic armor tiles SICADUR.jpg
SICADUR silicon carbide tiles for vehicles (e.g. Mowag Piranha)
Composite ceramic armor tested in accordance with STANAG 4569 requirements. STANAG Composite Armor.png
Composite ceramic armor tested in accordance with STANAG 4569 requirements.

Composite armour is a type of vehicle armour consisting of layers of different materials such as metals, plastics, ceramics or air. Most composite armours are lighter than their all-metal equivalent, but instead occupy a larger volume for the same resistance to penetration. It is possible to design composite armour stronger, lighter and less voluminous than traditional armour, but the cost is often prohibitively high, restricting its use to especially vulnerable parts of a vehicle. Its primary purpose is to help defeat high-explosive anti-tank (HEAT) projectiles.

Contents

HEAT had posed a serious threat to armoured vehicles since its introduction in World War II. Lightweight and small, HEAT projectiles could nevertheless penetrate hundreds of millimetres of the most resistant steel armours. The capability of most materials for defeating HEAT follows the "density law", which states that the penetration of shaped charge jets is proportional to the square root of the shaped charge liner density (typically copper) divided by the square root of the target density. On a weight basis, lighter targets are more advantageous than heavier targets, but using large quantities of lightweight materials has obvious disadvantages in terms of mechanical layout. Certain materials have an optimal compromise in terms of density that makes them particularly useful in this role. [2]

History

The earliest known composite armour for armoured vehicles was developed as part of the US Army's T95 experimental series from the mid-1950s. The T95 featured siliceous-cored armour which contained a plate of fused silica glass between rolled steel plates. The stopping power of glass exceeds that of steel armour on a thickness basis and in many cases glass is more than twice as effective as steel on a thickness basis. Although the T95 never entered production, a number of its concepts were used on the M60 Patton, and during the development stage (as the XM60) the siliceous-cored armour was at least considered for use, although it was not a feature of the production vehicles. [2]

The first widespread use of a composite armour appears to have been on the Soviet T-64. It used an armour known as combination K , which apparently is glass-reinforced plastic sandwiched between inner and outer steel layers. Through a mechanism called thixotropy, the resin changes to a fluid under constant pressure, allowing the armour to be moulded into curved shapes. Later models of the T-64, along with newer designs, use a boron carbide-filled resin aggregate for greatly improved protection[ citation needed ] . The Soviets also invested heavily in reactive armour, which allowed them some ability to control quality, even after production.

Among NATO nations and allies, the most common type of composite armour today is Chobham armour,[ citation needed ] first developed and used by the British in the experimental FV 4211 tank, which was based on Chieftain tank components. Chobham uses multiple non-explosive reactive armour plates (NERA), which sandwich a layer of elastomer (like rubber) between two plates of steel armour. This was shown to dramatically increase the resistance to HEAT projectiles, even in comparison to other composite armour designs. Chobham was such an improvement that it was soon used on the new U.S. M1 Abrams main battle tank (MBT) as well. The need to mount multiple angles plates, along with an outer steel layer to protect the armour array, gives the Challenger and Abrams their "slab sided" look.

The Soviets/Russians had a similar composite armour to the West's own "NERA", with rubber sandwiches between plates of steel. [3] This armour was confirmed to be inside the T-72B's "Super Dolly Parton" armour, but is suspected to be inside the T-80A as well, since it is unlikely the Soviets would put worse armour in their "premier" tank.

Design

Chobham armour defeats HEAT warheads by disrupting the high speed jet generated by the warhead. The outer steel "burster" plate detonates the shell and protects the composite array from the blast, increasing the armour's multi hit abilities. After making it through the burster plate, the jet penetrates into the first NERA plate, and begins to compress the elastomer. The elastomer quickly reaches maximum compression and rapidly expands, pushing the two steel plates in opposite directions. It is the movement of the steel plates that disrupts the jet, both by feeding more material into the jet's path, and introducing lateral forces to break the jet apart. The effectiveness of the system was amply demonstrated in Desert Storm, where not a single British Army Challenger tank was lost to enemy tank fire. (However, one was destroyed by friendly fire on March 25, 2003, killing two crew members after a HESH projectile detonated on the commander's hatch causing high-velocity fragments to enter the turret. [4] ) Chobham-type armour is currently in its third generation and is used on modern western tanks such as the British Challenger 2 and the American M1 Abrams. The Abrams is also unique in its usage of depleted uranium armour plates in conjunction with composite armour, increasing overall vehicle protection. The Leopard 2A4 is similar in its use of tungsten inserts.

Use

All modern third-generation main battle tanks use composite armour arrays in their construction. While many of these vehicles feature the composite armour permanently integrated with the vehicle, the Japanese Type 10 and Type 90 Kyū-maru MBTs, French Leclerc, Iranian Karrar, Turkish Altay, Indian Arjun, Italian Ariete and Chinese Type 96/98 and Type 99 tanks use a modular composite armour, where sections of the composite armour can be easily and quickly switched out or upgraded with armour modules. The adoption of modular composite armour design facilitates far more efficient and easier upgrades and exchanges of the armour.

Soviet/Russian main battle tanks such as T-90s T-80Us and the Chinese Type 96/99s use composite armour in tandem with explosive reactive armour (ERA), making it hard for shaped charge munitions such as HEAT projectiles and missile warheads to penetrate the frontal and a portion of their side armour. The most advanced versions of these armours such as the Relikt and Kontakt-5 armour provide protection not only against shaped charges but also kinetic energy penetrators by using the explosive force to shear the projectile apart.

Applique armour has also been used in conjunction with composite armour to provide increased amounts of protection and to supplant existing composite arrays on a vehicle. The German Leopard 2A5 featured distinctive arrowhead laminated armour modules that was mounted directly onto the turret composite arrays, increasing protection markedly above the previous 2A4 model.

Composite armour has since been applied to smaller vehicles, right down to jeep-sized automobiles. Many of these systems are applied as upgrades to existing armour, which makes them difficult to place around the entire vehicle. Nevertheless, they are often surprisingly effective; upgrades with MEXAS ceramic armour to Canadian M113s were carried out in the 1990s, after it was realized that it would offer more protection than newly built IFVs like the M2 Bradley.[ citation needed ]

Improvised

In 2004, American Marvin Heemeyer used an ad hoc composite armour on his Komatsu D355A bulldozer ("which he called the MK Tank and in popular culture, the Killdozer") used in a rampage in response to a dispute with the city he lived in over a zoning issue. The armour, at some places a 1 foot (30 cm) thick, consisted of a layer of concrete sandwiched between layers of steel, successfully rendering the vehicle impervious to small arms fire and small explosives used by law enforcement in an attempt to stop the vehicle.

See also

Related Research Articles

<span class="mw-page-title-main">Reactive armour</span> Type of vehicle armour

Reactive armour is a type of vehicle armour used in protecting vehicles, especially modern tanks, against shaped charges and hardened kinetic energy penetrators. The most common type is explosive reactive armour (ERA), but variants include self-limiting explosive reactive armour (SLERA), non-energetic reactive armour (NERA), non-explosive reactive armour (NxRA), and electric armour. NERA and NxRA modules can withstand multiple hits, unlike ERA and SLERA.

<span class="mw-page-title-main">Armour-piercing ammunition</span> Ammunition type designed to penetrate armour

Armour-piercing ammunition (AP) is a type of projectile designed to penetrate armour protection, most often including naval armour, body armour, vehicle armour.

<span class="mw-page-title-main">Chobham armour</span> British-designed composite tank armour

Chobham armour is the informal name of a composite armour developed in the 1960s at the British tank research centre on Chobham Common, Surrey. The name has since become the common generic term for composite ceramic vehicle armour. Other names informally given to Chobham armour include Burlington and Dorchester. Special armour is a broader informal term referring to any armour arrangement comprising sandwich reactive plates, including Chobham armour.

<span class="mw-page-title-main">High-explosive squash head</span> Ammunition type

A high-explosive squash head (HESH), in British terminology, or a high-explosive plastic/plasticized (HEP), in American terminology, is a type of explosive projectile with plastic explosive that conforms to the surface of a target before detonating, which improves the transfer of explosive energy to the target. Squash head projectiles are similar to high-explosive projectiles and are well suited to many of the same targets. However, while HESH projectiles are not armour-piercing, they can defeat armored targets by causing spall, which can injure or kill a vehicle's occupants or detonate some types of ammunition.

<span class="mw-page-title-main">High-explosive anti-tank</span> Type of shaped charge explosive

High-explosive anti-tank (HEAT) is the effect of a shaped charge explosive that uses the Munroe effect to penetrate heavy armor. The warhead functions by having an explosive charge collapse a metal liner inside the warhead into a high-velocity shaped charge jet; this is capable of penetrating armor steel to a depth of seven or more times the diameter of the charge. The shaped charge jet armor penetration effect is purely kinetic in nature; the round has no explosive or incendiary effect on the armor.

<span class="mw-page-title-main">Kontakt-5</span> Type of explosive reactive vehicle armour

Kontakt-5 is a type of second-generation explosive reactive armour (ERA) originating in the Soviet Union. It is the first type of ERA that is able to significantly decrease the penetration of High-explosive anti-tank (HEAT) rounds, but is not able to prevent modern armour-piercing fin-stabilized discarding sabot (APFSDS) Like the European DM53 from penetrating the armor.

Rolled homogeneous armour (RHA) is a type of vehicle armour made of a single steel composition hot-rolled to improve its material characteristics, as opposed to layered or cemented armour. Its first common application was in tanks. After World War II, it began to fall out of use on main battle tanks and other armoured fighting vehicles intended to see front-line combat as new anti-tank weapon technologies were developed which were capable of relatively easily penetrating rolled homogeneous armour plating even of significant thickness.

<span class="mw-page-title-main">Vehicle armour</span> High-strength plating used to fortify important vehicles against bullets, shells etc.

Military vehicles are commonly armoured to withstand the impact of shrapnel, bullets, shells, rockets, and missiles, protecting the personnel inside from enemy fire. Such vehicles include armoured fighting vehicles like tanks, aircraft, and ships.

The following is a list of ammunition fired by the 125 mm smoothbore gun series used in the T-64, T-72, T-80, M-84, T-90, PT-91, T-14 Armata, and other tanks derived from those designs, as well as the 2A45 Sprut anti-tank gun.

<span class="mw-page-title-main">Spaced armour</span> Armour with plates spaced a distance apart

Armour with two or more plates spaced a distance apart falls under the category of spaced armour. Spaced armour can be sloped or unsloped. When sloped, it reduces the penetrating power of bullets and solid shot, as after penetrating each plate projectiles tend to tumble, deflect, deform, or disintegrate; spaced armour that is not sloped is generally designed to provide protection from explosive projectiles, which detonate before reaching the primary armour. Spaced armour is used on military vehicles such as tanks and combat bulldozers. In a less common application, it is used in some spacecraft that use Whipple shields.

Ceramic armor is armor used by armored vehicles and in personal armor to resist projectile penetration through its high hardness and compressive strength. In its most basic form, it consists of two primary components: A ceramic layer on the outer surface, called the "strike face," backed up by a ductile fiber reinforced plastic composite or metal layer. The role of the ceramic is to (1) fracture the projectile or deform the projectile nose upon impact, (2) erode and slow down the projectile remnant as it penetrates the shattered ceramic layer, and (3) distribute the impact load over a larger area, which can be absorbed by ductile polymer or metallic backings. Ceramics are often used where light weight is important, as they weigh less than metal alloys for a given degree of resistance. The most common materials are alumina, boron carbide, and, to a lesser extent, silicon carbide.

<span class="mw-page-title-main">Combination K</span> Type of Soviet composite armor

Combination K is a type of composite armor. It is fitted onto the Soviet Union tank T-64.

<span class="mw-page-title-main">Main battle tank</span> Tank designed for all primary combat roles

A main battle tank (MBT), also known as a battle tank or universal tank, is a tank that fills the role of armour-protected direct fire and maneuver in many modern armies. Cold War-era development of more powerful engines, better suspension systems and lighter composite armour allowed for the design of a tank that had the firepower of a super-heavy tank, the armour protection of a heavy tank, and the mobility of a light tank, in a package with the weight of a medium tank. The first designated MBT was the British Chieftain tank, which during its development in the 1950s was re-designed as an MBT. Throughout the 1960s and 1970s, the MBT replaced almost all other types of tanks, leaving only some specialist roles to be filled by lighter designs or other types of armoured fighting vehicles.

The Kanchan Armour is the name informally given to a modular composite armour developed by India. The armour got its name from Kanchan Bagh, Hyderabad, Telangana, where the Defence Metallurgical Research Laboratory (DMRL) is located.

The Modular Expandable Armor System (MEXAS) is a composite armour system developed by the German company IBD Deisenroth Engineering. MEXAS was introduced in 1994 and has been applied on over 20,000 combat vehicles worldwide. The successor of MEXAS is the Advanced Modular Armor Protection (AMAP).

Electric armour or electromagnetic armour is a type of reactive armour proposed for the protection of ships and armoured fighting vehicles from shaped charge and possibly kinetic weapons using a strong electric current, complementing or replacing conventional explosive reacting armour (ERA).

The post–Cold War era is the period in world history from the collapse of the Soviet Union on December 27, 1991 to the present. During the Cold War, the Soviet domination of the Warsaw Pact led to effective standardization on a few tank designs. In comparison, France, Germany, the United States, and the United Kingdom had previously developed their own tank designs, but now tried to standardize their designs, while the smaller nations of NATO purchased or adapted these designs.

<span class="mw-page-title-main">MBT-80</span> British military tank

The FV4601 MBT-80 was a British experimental third-generation main battle tank, designed in the late 1970s to replace the Chieftain tank. It was eventually cancelled in favour of the Challenger 1, itself an evolution of the Chieftain design.

Stillbrew armour, or more correctly, the Stillbrew Crew Protection Package (SCPP) was an add-on passive composite armour applied to the FV4201 Chieftain main battle tank used by the British Army's Royal Armoured Corps in the mid-1980s and early-1990s so as to provide increased protection from anti-tank warfare weapons. It was named after the two men that invented it, Colonel Still and John Brewer, from the Military Vehicles and Engineering Establishment in Surrey. The tanks to which it was fitted were colloquially referred to as Stillbrew Chieftains.

Non-explosive reactive armour (NxRA), also known as non-energetic reactive armor (NERA), is a type of vehicle armor used by modern main battle tanks and heavy infantry fighting vehicles. NERA advantages over explosive reactive armor (ERA) are its inexpensiveness, multi-hit capability, and ease of integration onto armored vehicles due to its nonexplosive nature.

References

  1. "Leclerc Main Battle Tank". www.tanks-encyclopedia.com. Archived from the original on 2 February 2019. Retrieved 27 April 2022.
  2. 1 2 Evaluation of Siliceous Cored Armor for the XM60 Tank Archived June 5, 2011, at the Wayback Machine
  3. "T-72B MBT – The First Look at Soviet Special Armor". Journal of Military Ordnance: 4–8. 12 June 2015.
  4. "UK Ministry of Defence : Army Board of Inquiry Report" (PDF). Archived from the original (PDF) on 2012-10-26. Retrieved 2016-07-06.