Rolls-Royce Meteor

Last updated
Rolls-Royce Meteor
Rolls-Royce Meteor engine bovington 2020.JPG
Rolls-Royce Meteor Mark III at The Tank Museum
Overview
Manufacturer Rolls-Royce Limited
Meadows
Rover
Morris Motors
Also calledRover Meteor
Production1941–1964
Layout
Configuration V-12
Displacement 27.022 litres (1648.96 ci)
Cylinder bore 5.4 in (137 mm)
Piston stroke 6 in (152 mm)
Valvetrain SOHC 4v Per cylinder - 48 valves
Compression ratio 6:1–7:1
Combustion
Fuel typePetrol
Cooling system Water
Output
Power output 550–810 bhp (410–600 kW)
Rolls-Royce Meteor M120 810 hp
Torque output 1,450 lb⋅ft (1,970 N⋅m)

The Rolls-Royce Meteor later renamed the Rover Meteor is a British tank engine that was developed during the Second World War. It was used in British tanks up to 1964. It was a result of co-operation between Leyland Motors and Rolls-Royce who between them in 1941 had suggested that a specialised de-rated version of the Merlin aero-engine would be highly suitable for use in armoured fighting vehicles.

Contents

The Meteor was developed from the Merlin by W. A. Robotham and his chassis design and development division at Clan Foundry, Belper, as they were not involved in aero-engine work and his engineers were under-used. With the aid of engineers from Leyland, who were engaged in tank work, he considered RR's two V12s; the Kestrel, while having more power than the existing "Liberty" or Meadows engines, did not provide the desirable 20  bhp per ton (producing only 475 bhp on "pool" petrol) required, so the 1,030 bhp (770 kW) Merlin III was chosen. Also, the Merlin was being produced in two factories, and some components not suitable for an aero engine could be used in a "derated" Meteor engine (unlike an aero engine, a tank engine did not require continuous maximum power, even when driven hard). Robotham was at pains to point out that Rolls-Royce could not manufacture the engines, so would not benefit commercially. [1]

On 27 April 1941, the Directorate of Tank Design (DTD) supported production of the Meteor, eventually placing orders direct with Rolls-Royce to maintain development in connection with the Cromwell tank. [2] A new tank specification, A27M, was produced for design of the Meteor-powered tank. The Meteor engine went on to become one of the most successful British tank engines.

In 1942, after the British Tank Mission visit to America in April, there was some pressure from British car and commercial vehicle manufacturers to adopt the new 500 bhp (370 kW) Ford V8 tank engine (to be used in the M4 Sherman tank) for use in British tanks, rather than the Meteor then under development, because an adapted aero engine "would not be suitable as a rugged tank engine". But the Ford V8 had "teething problems", which were not overcome until after the Normandy landings in 1944. [3]

Design and development

Engine design

Development started with the use of recovered Merlin engine parts from crashed aircraft. While unsuitable for re-use in aircraft, the Rolls-Royce chassis division had begun collecting and refurbishing them in the hope of finding a use. Robotham was approached by Henry Spurrier, of Leyland Mechanization and Aero, to ask about help with tank powerplants. Based on Spurrier's requirement, the first prototype Meteor engine (and subsequent production of Mark 1 engines) was assembled on the basis of recovered Merlin parts.

The major change for tank use was to reverse the direction of engine rotation. Automotive gearboxes ran the opposite way to an aircraft propeller and changing direction required modification of the camshaft lobes (most Merlins were "right-hand tractor", i.e. the propeller rotated clockwise when viewed from the rear). For the Meteor, the Merlin supercharger, reduction gear and other equipment were removed from its crankshaft, greatly simplifying its construction. Many aircraft-specific parts were deleted, such as the propeller reduction gear and the aircraft-style starter. That meant the dimensions of the engine became similar to the Nuffield Liberty engine, and it would fit into the space for the Liberty Mark VI version in the Crusader tank. It retained the Merlin dual ignition system — each cylinder had two spark plugs, driven from separate magnetos.

A Crusader tank, similar to as used in trials Crusader tank III.jpg
A Crusader tank, similar to as used in trials

On 6 April 1941, the first Merlin prepared for tank use was despatched to Aldershot in a modified Crusader tank, which was tested on the Army standard speed course behind Farnborough. [4] A "maximum revolution recorder" recorded "something in excess of 50 miles per hour (80 km/h)". The officers with stopwatches at each end of the run were meant to signal each other by dropping handkerchiefs, but were so nonplussed that neither got a timing. Some spectators by the course took fright, running away and leaping over a hedge. The corporal driving kept his foot down, and failed to take a corner on the run-off section at the end, decapitating a telegraph pole and spreading coils of wire in all directions. [5] So the concept was proved, surpassing all expectations.

The engine was commissioned for use in the new Cromwell tank and changes were made to the Cromwell development programme to accommodate it. To enable fitting it in-line with a Merrit-Brown gear (and steering) box, the engine was lowered. A new flat sump was created, the oil pumps changed and the crankshaft lined up with the new gearbox. The new engine had cast pistons, rather than forged ones, and was de-rated to around 600 bhp (447 kW), running on lower-octane pool petrol instead of high-octane avgas (aviation fuel). British Thomson-Houston (BTH) magnetos were changed for Simms units.

Expansion into tank design

The engine, and the Rolls-Royce team's fresh look at tank development, had a major impact on British tank design. As development of the engine progressed, the Rolls-Royce team became more and more involved in development of the tank. Despite his lack of experience in tank design or warfare, Robotham was made Chief Engineer of Tank Design in the Ministry of Supply and joined the Tank Board. He was involved in the Cruiser Mk VIII Challenger tank. The Rolls-Royce chassis division, which had commenced the Meteor design, evolved into its Tank Division at Belper and was involved with the overall design of four versions of the Cromwell tank, using a standard set of components.

Production

Cromwell tank showing its speed during official inspection The British Army in the United Kingdom 1939-45 H37168.jpg
Cromwell tank showing its speed during official inspection

Early prototypes were produced by Rolls-Royce. In 1941, Leyland, which had an order for 1,200 Meteor engines, was still advocating its own diesel tank engine for the Cromwell tank. It would deliver only 350 hp (260 kW), but Leyland was concerned with the problem of sufficient cooling for the Meteor within the confines of the tank engine bay. When Leyland withdrew its support, Robotham took the problem to Ernest Hives. Hives took the problem to the Ministry of Supply, telling Lord Beaverbrook that he already had his hands full making Merlin aero engines, and Rolls-Royce would want £1 million to its credit and 'no interference' to make tank engines, The Beaver telegrammed back: [6] [7]

OHMS Ministry of Supply to W. Hives Nightingale Road Rolls-Royce Derby
The British Government has given you an open credit of one million pounds. This is a certificate of character and reputation without precedent or equal. Beaverbrook.

An order for 1,000 engines followed with, and a new tank design specification was created: A27M, splitting design of the Meteor powered Cromwell away from Leyland to Birmingham Railway Carriage and Wagon Company (BRC&W). They resolved the cooling problems, ultimately delivering before Leyland's version, although production leadership later switched back to Leyland when BRC&W could not keep up with demand.

The Meteor was initially produced by Rolls-Royce but manufacturing capacity was severely limited due to the demand for Merlin engines. Early units were still manufactured using recovered Merlin parts and many early Meteors still showed crash damage. When engine manufacturing needed to increase output, brand new engines had to be made. Because weight saving was not so important for a tank engine, some of the Merlin's more expensive light-alloy components were replaced with cheaper, steel versions. It was also envisaged that the Meteor would use some components rejected on quality grounds for the Merlin, but suitable for a derated Meteor engine. [8] Many of these rejected parts while not meeting strict standards for airworthiness, were perfectly adequate for use in ground vehicles where the crew or operators were not subject to the inherent hazards involved in flight.

To increase production, Meadows produced some Meteors but the small factory of 2,000 men was producing 40 types of engine. To make enough Meteors for the Cromwell build programme, Rolls-Royce agreed to move Meteor production to the Rover Company at Tyseley and Morris at Coventry.

Rolls-Royce was also aiding the development of production jet engines at Rover, but progress there was slow and there were disputes between Power Jets designers of the engine. Rover became disillusioned. Backed by the MAP who were unable to force Power Jets to become part of Rover, Hives struck a deal in December 1942 with Spencer Wilks of Rover to trade W.2B/23 production and the Rover jet design team at Barnoldswick for the Rolls-Royce tank engine factory in Nottingham and production of the Meteor, to become officially effective on 1 April 1943. In 1943, an acute shortage of blocks was met by dismantling surplus older marks of Merlin.

Rover took over the Meteor in January 1944 and in 1946 the British Government made Rover responsible for research and development of large military engines. In this role, Rover continued the development and production of the Meteor Mk IVb and various derivatives, including the Meteorite V8 and the M120 V12. Rover ceased this activity in 1964, having produced approximately 9,000 engines. The Land Rover success required more manufacturing capacity, so Rolls-Royce again became responsible for the manufacture of spare parts. Future engines for British tanks were manufactured by the engine division Rolls-Royce Diesels of Shrewsbury, which in 1969 had a seven-figure unfulfilled order for Meteor spares. [9] It was acquired by Perkins in the 1980s. Perkins was taken over by Caterpillar Inc in 1997.

Performance

Previously British tanks had been regarded as underpowered and unreliable and the Meteor is considered to be the engine that, for the first time, gave British tanks ample, reliable power. Replacing the earlier Liberty L-12 licence-built by Nuffield and used in the Crusader, the Meteor engine in the Cromwell tank provided almost twice the performance in virtually the same 1,650-cubic-inch (27.0 L) displacement. Reliability was significantly improved against previous tank engines. With a Rolls-Royce Merlin origin, the Meteor was very lightly stressed and reliable. W. A. Robotham was surprised and pleased when in 1963 Duncan Sandys said "I regard the adoption of the Meteor tank engine as the absolute turning-point in the history of British tank development", at the opening of the Rolls-Royce aero engine factory at East Kilbride. Sandys had been wartime Parliamentary Secretary to the Ministry of Supply and Robotham who resigned from the Ministry in 1943 wrote that Sandys was knowledgeable on army matters. [10]

With the introduction of the Meteor engine in the Cromwell, originally intended for the 340 horsepower (250 kW) Liberty, the boost to 550 horsepower (410 kW) gave the vehicle exceptional mobility and speed. This increase in power made it possible to integrate greater armour on following tanks. Designers and military planners started to consider the possibility of a Universal tank, able to undertake both high-armour (Infantry tank) and high-mobility (Cruiser tank) roles. Ultimately, this resulted in the Centurion tank and evolved into the main battle tank concept.

Applications

The Meteor was used in the following vehicles:

The Meteor was also used as the propulsion for the experimental Helmore Projector, later known as the Helmover, a 30 ft long remote controlled torpedo. It never reached deployment before the end of the war.

See also

Related Research Articles

<span class="mw-page-title-main">Rolls-Royce Merlin</span> Aircraft engine family by Rolls-Royce

The Rolls-Royce Merlin is a British liquid-cooled V-12 piston aero engine of 27-litre capacity. Rolls-Royce designed the engine and first ran it in 1933 as a private venture. Initially known as the PV-12, it was later called Merlin following the company convention of naming its four-stroke piston aero engines after birds of prey. The engine benefitted from the racing experiences of precursor engines in the 1930s.

<span class="mw-page-title-main">Rover Company</span> Former British car company

The Rover Company Limited was a British car manufacturing company that operated from its base in Solihull, Warwickshire. Its lasting reputation for quality and performance was such that its first postwar model reviewed by Road & Track in 1952 was pronounced finer than any but a Rolls-Royce. Rover also manufactured the Land Rover series from 1948 onwards, which spawned the Range Rover in 1970, and went on to become its most successful and profitable product — with Land Rover eventually becoming a separate company and brand in its own right.

<span class="mw-page-title-main">Cromwell tank</span> British WWII cruiser tank

The Cromwell tank, officially Tank, Cruiser, Mk VIII, Cromwell (A27M), was one of the series of cruiser tanks fielded by Britain in the Second World War. Named after the English Civil War–era military leader Oliver Cromwell, the Cromwell was the first tank put into service by the British to combine high speed from a powerful, reliable engine and reasonable armour. The intended dual-purpose high-velocity gun could not be fitted in the turret, so a medium-velocity dual-purpose gun was fitted instead. Further development of the Cromwell combined with a high-velocity gun led to the Comet tank.

<span class="mw-page-title-main">Cruiser Mk VIII Challenger</span> British WWII cruiser tank

The Tank, Cruiser, Challenger (A30) was a British tank of World War II. It mounted the QF 17-pounder anti-tank gun on a chassis derived from the Cromwell tank to add anti-tank firepower to the cruiser tank units. The design compromises made in fitting the large gun onto the Cromwell chassis resulted in a tank with a powerful weapon and reduced armour. However, the extemporised 17-pounder Sherman Firefly conversion of the US-supplied Sherman proved easier to produce and, with delays in production, only 200 Challengers were built. The Challenger was able to keep up with the fast Cromwell tank and was used with them.

<span class="mw-page-title-main">Rover V8 engine</span> Reciprocating internal combustion engine

The Rover V8 engine is a compact OHV V8 internal combustion engine with aluminium cylinder block and cylinder heads, designed and produced by Rover in the United Kingdom, based on a General Motors engine. It has been used in a wide range of vehicles from Rover and other manufacturers since its British debut in 1967.

<span class="mw-page-title-main">Rolls-Royce Derwent</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.37 Derwent is a 1940s British centrifugal compressor turbojet engine, the second Rolls-Royce jet engine to enter production. It was an improved version of the Rolls-Royce Welland, which itself was a renamed version of Frank Whittle's Power Jets W.2B. Rolls-Royce inherited the Derwent design from Rover when they took over their jet engine development in 1943.

<span class="mw-page-title-main">Stanley Hooker</span> British aircraft engine engineer (1907–1984)

Sir Stanley George Hooker, CBE, FRS, DPhil, BSc, FRAeS, MIMechE, FAAAS, was a mathematician and jet engine engineer. He was employed first at Rolls-Royce where he worked on the earliest designs such as the Welland and Derwent, and later at Bristol Aero Engines where he helped bring the troubled Proteus turboprop and the Olympus turbojet to market. He then designed the famous Pegasus vectored thrust turbofan used in the Hawker Siddeley Harrier.

<span class="mw-page-title-main">Rolls-Royce Welland</span> Turbojet aircraft engine, Britains first production jet

The Rolls-Royce RB.23 Welland was Britain's first production jet engine. It entered production in 1943 for the Gloster Meteor. The name Welland is taken from the River Welland, in keeping with the Rolls-Royce policy of naming early jet engines after rivers based on the idea of continuous flow, air through the engine and water in a river.

<span class="mw-page-title-main">Thornycroft Antar</span> Heavy duty tractor

The Mighty Antar was a heavy-duty 6×4 tractor unit built by Thornycroft from the late 1940s onwards. For some decades it was the standard tank transporter of the British Army and was also used by other nations. It was powered by a shortened V8 land version of the V12 Meteor engine, derived from the Merlin and modified to run on diesel, known as the Rolls-Royce Meteorite.

Henry Meadows, usually known simply as Meadows, of Wolverhampton, England were major suppliers of engines and transmissions to the smaller companies in the British motor industry. Founded in 1920 in Park Lane, Wolverhampton, as a car gearbox maker, they expanded into petrol engines in 1922 and in the 1930s built a large factory in Fallings Park, Wolverhampton.

The Tank, Cruiser, Mk VII Cavalier (A24) was an interim design of British cruiser tank during the Second World War.

<span class="mw-page-title-main">Ernest Hives, 1st Baron Hives</span> Chairman of Rolls-Royce Ltd.

Ernest Walter Hives, 1st Baron Hives, was the one-time head of the Rolls-Royce Aero Engine division and chairman of Rolls-Royce Ltd.

This article lists British armoured fighting vehicle production during the Second World War. The United Kingdom produced 27,528 tanks and self-propelled guns from July 1939 to May 1945, as well as 26,191 armoured cars and 69,071 armoured personnel carriers.

<span class="mw-page-title-main">Rolls-Royce Limited</span> 1906–1987 UK automobile and aerospace manufacturer

Rolls-Royce Limited was a British luxury car and later an aero-engine manufacturing business established in 1904 in Manchester by the partnership of Charles Rolls and Henry Royce. Building on Royce's good reputation established with his cranes, they quickly developed a reputation for superior engineering by manufacturing the "best car in the world". The business was incorporated as "Rolls-Royce Limited" in 1906, and a new factory in Derby was opened in 1908. The First World War brought the company into manufacturing aero-engines. Joint development of jet engines began in 1940, and they entered production in 1944. Rolls-Royce has since built an enduring reputation for the development and manufacturing of engines for military and commercial aircraft.

Sir Henry Spurrier was a British engineer and industrialist, and the third generation of the Spurrier family to head Leyland Motors.

<span class="mw-page-title-main">Rolls-Royce Meteorite</span> Reciprocating internal combustion engine

The Rolls-Royce Meteorite, also known as the Rover Meteorite, was a post-war British 18.01 L (1,099 cu in) V8 petrol or diesel engine was derived from the Rolls-Royce Meteor tank engine.

<span class="mw-page-title-main">Ford GAA engine</span> Reciprocating internal combustion engine

The Ford GAA engine is an American all-aluminum 32-valve DOHC 60-degree liquid-cooled V8 internal combustion engine with a flat-plane crank designed and produced by the Ford Motor Company before and during World War II. It features twin Stromberg NA-Y5-G carburetors, dual magnetos and twin spark plugs making up a full dual ignition system, and crossflow induction. It displaces 1,100 cu in (18 L) and puts out well over 1,000 pound-feet (1,400 N⋅m) of torque from idle to 2,200 rpm. The factory-rated net output was 500 hp (370 kW) at 2,600 rpm.

<span class="mw-page-title-main">Bentley Crewe</span> Bentley Motor company office and factory

Bentley Crewe, also named the Pyms Lane site after the street it is located on; is the headquarters and design and manufacturing centre of Bentley Motors Limited on the outskirts of Crewe, Cheshire, England. The site covers an area of 521,111 m2 (5,609,190 sq ft), of which 166,930 m2 (1,796,800 sq ft) is indoors.

<span class="mw-page-title-main">Rolls-Royce B range engines</span> Series of gasoline engines for military vehicles

The Rolls-Royce B range was a range of petrol engines first intended to be installed in a car but in 1943 developed into a range to power the British Army's wheeled vehicles.

William Arthur Robotham was a Rolls-Royce executive involved in the development of Rolls-Royce cars, during World War II of tanks and tank engines, and post-war of Rolls-Royce and Bentley cars complete with bodies and then of industrial petrol and diesel engines.

References

Notes

  1. Robotham 1970, pp. 147–151.
  2. Munro 2005, pp. 18–21.
  3. Robotham 1970, p. 160.
  4. "Rolls-Royce Enthusiasts' Club – Clan Foundry Belper". RREC. Retrieved 1 December 2010.
  5. Robotham 1970, pp. 150, 151.
  6. Robotham 1970, pp. 154, 155.
  7. Fletcher 1989, p. 34.
  8. Sidgreaves[ clarification needed ]
  9. Robotham 1970, p. 268.
  10. Robotham 1970, p. 246.

References