Spaced armour

Last updated

Spaced armour around the turret of a PzKpfw IV. Pz-IVG-latrun-4.jpg
Spaced armour around the turret of a PzKpfw IV.
Schurzen spaced armour skirting on PzKpfw III Ausf. M protecting the hull and turret, June 1943. Bundesarchiv Bild 101I-219-0595-23, Russland-Mitte-Sud, Panzer III.jpg
Schürzen spaced armour skirting on PzKpfw III Ausf. M protecting the hull and turret, June 1943.
Slat armour, a type of spaced armour, seen on a IDF Caterpillar D9 combat bulldozer IDF-D9-Zachi-Evenor-001.jpg
Slat armour, a type of spaced armour, seen on a IDF Caterpillar D9 combat bulldozer

Armour with two or more plates spaced a distance apart falls under the category of spaced armour. Spaced armour can be sloped or unsloped. When sloped, it reduces the penetrating power of bullets and solid shot, as after penetrating each plate projectiles tend to tumble, deflect, deform, or disintegrate; spaced armour that is not sloped is generally designed to provide protection from explosive projectiles, which detonate before reaching the primary armour. Spaced armour is used on military vehicles such as tanks and combat bulldozers. In a less common application, it is used in some spacecraft that use Whipple shields.

Contents

Against kinetic penetrators

The first spaced armour was used on iron and steel warships from the mid-19th century. Between the thin outer armour of various less important parts and the thick main armour (protecting turrets, ammunition depots, boilers and turbines) were constructed storage spaces, coal or oil bunkers, and so on (Lord Nelson class). Some ships (e.g. Tirpitz, Takao, King George) had thicker outer and thinner inner layers to lower the damage caused by the penetrating round. From 1900 some cruisers and battleships were built with modern spaced armour, where the outer thin layer was intended only to damage the projectiles (e.g. Littorio class). [1]

Torpedo bulkheads also serve as a special form of spaced armour for naval vessels.

Tank spaced armour has been fielded since the First World War, when it was fitted to the French Schneider CA1 and Saint-Chamond tanks. The late variants of Panzer III had frontal spaced armour: a 20 mm thick face-hardened steel layer in front of the 50 mm thick main armour. Impacted projectiles were physically damaged by the 20mm plate, so the main armour could withstand much greater hits. Due to lack of materials, German industry eventually switched to Rolled Homogeneous Armour (RHA), which is less effective and due to the slower production process, the technique was not widespread on German tanks.

It is important in designing of integral spaced armour that each layer should be thick enough to cause adequate damage to the projectile or jet. So the thickness of every layer should reach roughly the half of the diameter of projectile expected to impact.

Many World War II-era German tanks used armoured skirts (Schürzen) to make their thinner side-armour more resistant to anti-tank rifles. Contrary to popular belief the German Schürzen were designed against kinetic (AP, APBC, APCBC) projectiles. [2] [3] The effectiveness of conventional AP projectiles was significantly reduced if they broke through a thin plate or dense wire net, because the projectiles become unstable in their trajectory and their tip would also be damaged. This method was very effective against contemporary light anti-tank weapons, like the Soviet 14.5 mm PTRD-41 anti-tank rifle and 45 mm M1937 anti-tank gun, the British 57mm Ordnance QF 6-pounder, and the US 37mm gun. [4] [ page needed ] [5] [6]

Some armoured vehicles used nets of wooden logs at a certain distance from the hull as makeshift spaced armour to protect the vehicle from magnetic mines, thrown shaped charges and grenades, and occasionally suicidal methods (e.g. the Japanese lunge mine). This method occurred on US M4 Sherman and Soviet T-34 medium tanks among others.

Against high explosive anti-tank rounds

Most of the Cold War spaced armour was designed against medium-to-low caliber kinetic munitions, (e.g. 30mm autocannon and 76mm HESH rounds), especially vehicle side skirts. Most of them were made of RHA plates (Centurion), or thick reinforced rubbers (T-72), and worked in the same way as did WW2-era ones.

This light armour also detonates explosive warheads prematurely. High-explosive anti-tank-type warheads (HEAT) use a focused hypervelocity jet of copper or steel to penetrate armour. To be effective, HEAT warheads must detonate at a specific distance from the target's primary armour to ensure maximum penetration. Thus early detonation greatly reduces the penetration of HEAT ammunition. This requires a distance of 1.2 meters even for an early 100mm projectile, thus conventional skirts are effective against HEAT only at very low angle of incidence. [4]

The use of add-on spaced armour skirts can sometimes have the opposite effect and increase the penetration of some shaped charge warheads. Due to constraints in the length of projectiles, some designs intentionally detonate closer than the optimum distance. In such cases, the skirting effectively increases the distance between the armour and the target, and the warhead detonates closer to its optimum stand-off. [7]

To increase effectiveness of skirts against HEAT weapons some mid-cold-war tanks (early T-64s) had gill-style armour. It contained a few short skirts on the side of the vehicle which are opened in open terrain at an angle of between 30–45°, increasing the space between the armour and the plate. It was effective (mass-to-efficiency ratio), but easily detached from the vehicle so it did not spread widely.[ citation needed ]

A special version of reactive spaced armour is slat armour . It uses the power of the impacting projectile (RPG, ATGM) to destroy them. Steel slats placed at a specified distance have a 50–60% chance of breaking an RPG-7's warhead so no cumulative beam can be formed. It also provides some protection against grenades.

Storage spaces within the spaced armour on a Merkava MBT Merkava-1-batey-haosef-2.jpg
Storage spaces within the spaced armour on a Merkava MBT

In response to increasingly effective HEAT, HESH and APFSDS warheads, integral spaced armour was reintroduced in the 1960s on the German Leopard 1 and later the Merkava. Spaces between plates increase the distance a projectile must travel to reach the interior of a vehicle. Sometimes the interior surfaces of these cavities are sloped, presenting angles to the anticipated path of the shaped charge's jet or kinetic penetrator to further dissipate their power. The two (or more) layered spaced RHA armour were highly effective against early steel and tungsten APFSDS munitions, because the rod was severely damaged by penetrating the first layer and was thus ineffective on the inner armour. Therefore, a much thinner total steel thickness and weight was enough against a specific projectile. For example, a given weight of armour can be distributed in two layers 15 cm (6 in) thick instead of a single 30 cm (12 in) layer, giving much better protection against HESH and APDS munitions, but their effect on shaped charges was limited. [8] So military researchers tried to increase the efficiency of spaced armour by changing the used materials and increasing the number of layers, from the early sixties.

Composite spaced armour

Multilayer spaced armour, which also use special materials, are a transition to composite armour, most of the latter are also partially spaced armour.

BDD armour on a T-55AM T-55AM in the Kubinka Museum.jpg
BDD armour on a T-55AM

In the case of the Leopard 1A3 and later variants, the outer layer of spaced armour was hardened steel and the space was filled by elastomer, thus the effectiveness of the shattering effect of the outer layer against APFSDS was outstanding, and the protection against early HEAT warheads was increased, too. The BDD add-on armour of T-55 and T-62 series based on the same effect, but it had multiple layers within elastomer, therefore it roughly doubled the frontal protection of these tanks against APDS and HEAT weapons, and made the areas of add-on immune to HESH rounds. [9] In T-64 and early T-72 (up to T-72M1) and T-80 (to mid T-80A) used stekloplastik (a special military-grade dense glass-fiber reinforced pressured plastic) as filling in the frontal upper glacis spaced armour. This plastic was effective in lowering the concentration of the jet of shaped charges and in destabilizing kinetic penetrators. [10]

Hardened steel plates have become commonplace for outer part of spaced armour from the 1980s, not only on tanks but also on APCs and IFVs. With this add-on armour, even the APC's thin armour is sufficient against kinetic bullets of 12.7 mm (Stryker and BTR-80 upgrades) and 14.5 mm (Bradley, BMP-3) and also provides some protection against IEDs.

The increase in the number of layers in spaced armour increases the physical damage and destabilization of jets and kinetic penetrators, so it is common in more modern armour to use successive layers alternating between softer (air, aluminium or plastic) and harder (RHA, SHS) layers. With multiple layers the likelihood of a bounce in case of kinetic projectiles is also increased. Thus, later T-72B and T-90 armour used seven-layered spaced armour (with hardened steel plates) to achieve much stronger protection at a cost of minimal weight increases.[ citation needed ]

The more advanced late Cold War tanks were given multi-layer skirts (Leopard 2), in which passive (or reactive) effects significantly reduced the effectiveness of HEAT ammunition. At the same time, these elements are already heavy and have considerable thickness, which increases the size and weight of the vehicle and make maintenance difficult. Russian and some Western tanks carry explosive-reactive armour blocks to increase the effectiveness of spaced armour (particularly in the case of side skirts, e.g. TUSK and T-90), and main frontal armour. [9] [11]

Almost all modern Western and Japanese and most Soviet tanks used some kind of spaced armour on the fronts and sides. Side panels of superstructures usually contain fuel, batteries and other less vital elements or munition of secondary weapons, because they also reduce the effectiveness of penetrating projectiles. In the most important areas (frontal armour and sides of turret) the cavity of spaced armour contains composite panels. From the 1980s, most Western tanks have composite armour blocks on the frontal part of the skirts, made of hardened steel or NERA armour (non-explosive-reactive armour, known as "Burlinghton armour"). Most modern MBTs (e.g. T-72B, Leopard 2, M1, Type 10, K2, T-90, Type96) have NERA armour in their spaced armour which supplement the inner ceramic armour and spall liners in some cases. In contrast, Soviet tanks were initially made with ceramic (corundum or silicate) inserts (T-64A, T-72A, T-72M1, T-80) and NERA-style inserts spread in the upgraded versions of their vehicles later (T-72B, T-80A, T-72BU). [10] [12] [11] [13] More detail in composite armour.

Currently, composite spaced armour with hardened steel outer layer (often filled with NERA or ceramic inserts) are becoming more common on most advanced light battle tanks (ZTQ-15) and IFVs (Namer, Puma). [14] [15]

Materials

As designs became more specialized, more and more materials were used. The most important are:

Elastomers

Some modern main battle tanks (MBTs) and IFVs carry rubber or steel (hardened in some cases) skirts to protect their relatively fragile suspension and lower side armour and lower glacis, often combining the two. Some elastomer fillings (e.g. M551's floating cells and screens, T-72B's radiation protection layer) behave like spaced armour, where the elastic layer effectively lowers the concentration of the jet of HEAT warheads. Leopard 1A3s and 1A4s and the add-on armour of T-55s and T-62s use dense polystyrene filling to increase the effectiveness of spaced armour. The early second generation Russian MBTs use dense glass-fibre reinforced pressured plastic as filling in the frontal upper glacis spaced armour, which is even more effective than the pure elastomer.[ citation needed ]

NERA armour also use elastomers pressed between two or three sheets steel or aluminium layers, it acts as ERA armour with lesser effectiveness, but is not destroyed during operation, so it can hold multiple hits in the same place. Most of the modern MBTs use some NERA layer within their spaced armour, or as an outer layer. [13]

Hardened steel

Whereas normal armour must compromise between hardness and ductility, spaced armour can be constructed from plates with differing material properties to increase effectiveness against kinetic energy penetrators. Most of the Cold War and modern spaced armours use rolled homogeneous armour as the inner layer and a thin (10–30 mm) face-hardened, semi-hardened steel plate as the outer layer. The thin but very hard outer layer acts as a burster and shatter plate, which allows the main armour to be designed much thinner with the same protection level. The most advanced designs use triple- or high-hardened steel. In some cases aluminium is added to hardened steel armour as a softer inter-layer to destabilise the projectiles and HEAT jets by density changes.[ citation needed ]

The Leopard 2 uses a slanted first armour stage (disturber), a specially hardened second stage (disrupter) and a softer, high ductility third stage (absorber). The disturber is designed to either entirely deflect or manipulate the direction of incoming kinetic energy penetrators. If penetration does occur, the projectile is then shattered and fragmented when striking the disrupter. Assuming the first two stages work properly, the absorber stage captures spalling and fragments.

Others

Some armoured fighting vehicles use the cavity of their spaced armour as fuel tanks or storage spaces, and warships used them as coal or oil bunkers, and rooms for non-vital components (e.g. washing rooms, food storage). The materials filling these spaces could further slow down the penetrating projectile, increasing the protection. Modern AFVs spaced armour contain special fillings forming composite armours.

Spacecraft

The Whipple shield uses the principle of spaced armour to protect spacecraft from the impacts of very fast micrometeoroids. The impact with the first wall melts or breaks up the incoming particle, causing fragments to be spread over a wider area when striking the subsequent walls.

Related Research Articles

<span class="mw-page-title-main">Tank</span> Tracked heavy armoured fighting vehicle

A tank is an armoured fighting vehicle intended as a primary offensive weapon in front-line ground combat. Tank designs are a balance of heavy firepower, strong armour, and battlefield mobility provided by tracks and a powerful engine; their main armament is often mounted within a turret. They are a mainstay of modern 20th and 21st century ground forces and a key part of combined arms combat.

<span class="mw-page-title-main">Kinetic energy penetrator</span> High density non-explosive projectile

A kinetic energy penetrator (KEP), also known as long-rod penetrator (LRP), is a type of ammunition designed to penetrate vehicle armour using a flechette-like, high-sectional density projectile. Like a bullet or kinetic energy weapon, this type of ammunition does not contain explosive payloads and uses purely kinetic energy to penetrate the target. Modern KEP munitions are typically of the armour-piercing fin-stabilized discarding sabot (APFSDS) type.

<span class="mw-page-title-main">Reactive armour</span> Type of vehicle armour

Reactive armour is a type of vehicle armour used in protecting vehicles, especially modern tanks, against shaped charges and hardened kinetic energy penetrators. The most common type is explosive reactive armour (ERA), but variants include self-limiting explosive reactive armour (SLERA), non-energetic reactive armour (NERA), non-explosive reactive armour (NxRA), and electric armour. NERA and NxRA modules can withstand multiple hits, unlike ERA and SLERA.

<span class="mw-page-title-main">Armour-piercing ammunition</span> Ammunition type designed to penetrate armour

Armour-piercing ammunition (AP) is a type of projectile designed to penetrate armour protection, most often including naval armour, body armour, vehicle armour.

<span class="mw-page-title-main">Composite armour</span> Type of vehicle armour

Composite armour is a type of vehicle armour consisting of layers of different materials such as metals, plastics, ceramics or air. Most composite armours are lighter than their all-metal equivalent, but instead occupy a larger volume for the same resistance to penetration. It is possible to design composite armour stronger, lighter and less voluminous than traditional armour, but the cost is often prohibitively high, restricting its use to especially vulnerable parts of a vehicle. Its primary purpose is to help defeat high-explosive anti-tank (HEAT) projectiles.

<span class="mw-page-title-main">Chobham armour</span> British-designed composite tank armour

Chobham armour is the informal name of a composite armour developed in the 1960s at the Military Vehicles and Engineering Establishment, a British tank research centre on Chobham Lane in Chertsey. The name has since become the common generic term for composite ceramic vehicle armour. Other names informally given to Chobham armour include Burlington and Dorchester. Special armour is a broader informal term referring to any armour arrangement comprising sandwich reactive plates, including Chobham armour.

<span class="mw-page-title-main">High-explosive anti-tank</span> Type of shaped charge explosive

High-explosive anti-tank (HEAT) is the effect of a shaped charge explosive that uses the Munroe effect to penetrate heavy armor. The warhead functions by having an explosive charge collapse a metal liner inside the warhead into a high-velocity shaped charge jet; this is capable of penetrating armor steel to a depth of seven or more times the diameter of the charge. The shaped charge jet armor penetration effect is purely kinetic in nature; the round has no explosive or incendiary effect on the armor.

<span class="mw-page-title-main">Spall</span> Fragments broken off a larger solid body of material

Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure. Spalling and spallation both describe the process of surface failure in which spall is shed.

<span class="mw-page-title-main">Kontakt-5</span> Type of explosive reactive vehicle armour

Kontakt-5 is a type of second-generation explosive reactive armour (ERA) originating in the Soviet Union. Due to the shortcomings of Kontakt-1, NII Stali further developed the reactive armor to Kontakt-5, so that it also repels APFSDS projectiles, which is not as effective in combat as stated. In addition, Kontakt-5 is not just additional armor, but is clearly integrated into the vehicle hull. The Kontakt-5 modules have a significantly thicker steel upper side. Depending on the module, they contain one or two 4S22 reactive elements. The explosive of a 4S22 element has the TNT equivalent of 330 g. It is so sensitive that even armor-piercing projectiles cause it to explode. Kontakt-5 produces a stronger defensive detonation than Kontakt-1 and the thicker layer of steel thrown at the arrow projectile breaks or bends it. The increase in defensive capability led to the development of reinforced arrow projectiles.

Rolled homogeneous armour (RHA) is a type of vehicle armour made of a single steel composition hot-rolled to improve its material characteristics, as opposed to layered or cemented armour. Its first common application was in tanks. After World War II, it began to fall out of use on main battle tanks and other armoured fighting vehicles intended to see front-line combat as new anti-tank weapon technologies were developed which were capable of relatively easily penetrating rolled homogeneous armour plating even of significant thickness.

<span class="mw-page-title-main">Sloped armour</span> Type of armour

Sloped armour is armour that is oriented neither vertically nor horizontally. Such angled armour is typically mounted on tanks and other armoured fighting vehicles (AFVs), as well as naval vessels such as battleships and cruisers. Sloping an armour plate makes it more difficult to penetrate by anti-tank weapons, such as armour-piercing shells, kinetic energy penetrators and rockets, if they follow a more or less horizontal trajectory to their target, as is often the case. The improved protection is caused by three main effects.

<span class="mw-page-title-main">Vehicle armour</span> High-strength plating used to fortify important vehicles against bullets, shells etc.

Military vehicles are commonly armoured to withstand the impact of shrapnel, bullets, shells, rockets, and missiles, protecting the personnel inside from enemy fire. Such vehicles include armoured fighting vehicles like tanks, aircraft, and ships.

<span class="mw-page-title-main">Rheinmetall Rh-120</span> Smoothbore tank gun

The Rheinmetall Rh-120 is a 120 mm smoothbore tank gun designed and produced in former West Germany by the Rheinmetall-DeTec AG company, it was developed in response to Soviet advances in armour technology and development of new armoured threats. Production began in 1974, with the first version of the gun, known as the L/44 as it was 44 calibres long, used on the German Leopard 2 tank and soon produced under license for the American M1A1 Abrams and other tanks. The 120-millimetre (4.7 in) gun has a length of 5.28 metres (17.3 ft), and the gun system weighs approximately 3,317 kilograms (7,313 lb).

<span class="mw-page-title-main">Slat armor</span> Vehicle armor to protect against shaped charge warheads

Slat armor, also known as bar armor, cage armor, and standoff armor, is a type of vehicle armor designed to protect against high-explosive anti-tank (HEAT) attacks, as used by anti-tank guided missiles (ATGMs) and rocket-propelled grenades (RPGs).

<span class="mw-page-title-main">Combination K</span> Type of Soviet composite armor

Combination K is a type of composite armor. It is fitted onto the Soviet Union tank T-64.

Beyond-armour effect is a term coined by Försvarets Fabriksverk (FFV), a semi-governmental Swedish defense firm, while developing the AT4. From the 1980s this phrase was used in its brochures, press releases, weapon instruction manuals and other documentation to denote the post-penetration effect of the AT4's HEAT anti-armour warhead against the interior and occupants of armoured vehicles.

The Modular Expandable Armor System (MEXAS) is a composite armour system developed by the German company IBD Deisenroth Engineering. MEXAS was introduced in 1994 and has been applied on over 20,000 combat vehicles worldwide. The successor of MEXAS is the Advanced Modular Armor Protection (AMAP).

Electric armour or electromagnetic armour is a type of reactive armour proposed for the protection of ships and armoured fighting vehicles from shaped charge and possibly kinetic weapons using a strong electric current, complementing or replacing conventional explosive reacting armour (ERA).

Stillbrew armour, or more correctly, the Stillbrew Crew Protection Package (SCPP) was an add-on passive composite armour applied to the FV4201 Chieftain main battle tank used by the British Army's Royal Armoured Corps in the mid-1980s and early-1990s so as to provide increased protection from anti-tank warfare weapons. It was named after the two men that invented it, Colonel Still and John Brewer, from the Military Vehicles and Engineering Establishment in Surrey. The tanks to which it was fitted were colloquially referred to as Stillbrew Chieftains.

Non-explosive reactive armour (NxRA), also known as non-energetic reactive armor (NERA), is a type of vehicle armor used by modern main battle tanks and heavy infantry fighting vehicles. NERA advantages over explosive reactive armor (ERA) are its inexpensiveness, multi-hit capability, and ease of integration onto armored vehicles due to its nonexplosive nature.

References

  1. "Bismarck Armour Protection". www.kbismarck.com. Retrieved 27 August 2019.
  2. Thomas, Steven (16 July 2003), Why were Schürzen introduced in WW2? [ self-published source ]
  3. Hughes, Matthew (2000), The Panther Tank, Staplehurst: Spellmount, p. 30, ISBN   978-1-86227-072-5
  4. 1 2 Chamberlain, Peter (1974). Anti-tank weapons. Arco. ISBN   0668036079.
  5. "The ptrs and ptrd russian anti-tank rifles". Warfare History Network. 4 November 2016.
  6. Bonhardt, Attila, ed. (1992). A Magyar Királyi Honvédség fegyverzete (in Hungarian). Zrínyi. ISBN   9633271827.
  7. WILEY-VCH Verlag GmbH, D-69451 Weinheim (1999) – Propellants, Explosives, Pyrotechnics 24 – Effectiveness Factors for Explosive Reactive Armour Systems. p. 71
  8. Kaufmann; et al. (2004). "Ballistic Performance of Monoblock and Jacketed Medium-Caliber Penetrators against Composite Armor and Spaced Targets" (PDF). Armor and Impactor Studies.
  9. 1 2 Warford, James (2002). "Ilich's Eyebrows" (PDF). Armor. 2: 30–31.
  10. 1 2 "Основной боевой танк Т-80У "Объект 219АС"". btvt.narod.ru. Retrieved 27 August 2019.
  11. 1 2 "Leopard-2A0-A4 armor protection estimation". www.btvt.narod.ru. Retrieved 27 August 2019.
  12. Tankandafvnews (23 February 2016). "From the Vault: Chieftain Articles and Documents". Tank and AFV News. Retrieved 27 August 2019.
  13. 1 2 Sukumar, G. (2017). "Future Armour Materials and Technologies for Combat Platforms". Defence Science Journal. 67 (4): 412. doi:10.14429/dsj.67.11468.
  14. "ZTQ Light Tank". www.globalsecurity.org. Retrieved 27 August 2019.
  15. "Puma AIFV Tracked Armoured Infantry Fighting Vehicle". Army Technology. Retrieved 27 August 2019.