Pattern welding

Last updated
A contemporary pattern-welded sword blade made by Danish swordsmith Ejvind Norgard. The blade shows a chevron pattern with opposing twists and straight laminate alternating. Pattern Welded Sword Blade by Ejvind Norgard.jpg
A contemporary pattern-welded sword blade made by Danish swordsmith Ejvind Nørgård. The blade shows a chevron pattern with opposing twists and straight laminate alternating.

Pattern welding is the practice in sword and knife making of forming a blade of several metal pieces of differing composition that are forge-welded together and twisted and manipulated to form a pattern. [1] Often mistakenly called Damascus steel, blades forged in this manner often display bands of slightly different patterning along their entire length. These bands can be highlighted for cosmetic purposes by proper polishing or acid etching. Pattern welding was an outgrowth of laminated or piled steel, a similar technique used to combine steels of different carbon contents, providing a desired mix of hardness and toughness. Although modern steelmaking processes negate the need to blend different steels, [2] pattern welded steel is still used by custom knifemakers for the cosmetic effects it produces.

Contents

History

An image of a modern pattern welded knife blade, showing the dramatic patterning on the side below, and the layering of the steel in the spine above. Acid etching darkens the 1080 plain carbon steel more than it does the 15N20 low alloy nickel steel, producing alternating bands of light and dark on the surface. Knife blade 600dpi spine 1200dpi.jpg
An image of a modern pattern welded knife blade, showing the dramatic patterning on the side below, and the layering of the steel in the spine above. Acid etching darkens the 1080 plain carbon steel more than it does the 15N20 low alloy nickel steel, producing alternating bands of light and dark on the surface.

Pattern welding developed out of the necessarily complex process of making blades that were both hard and tough from the erratic and unsuitable output from early iron smelting in bloomeries. The bloomery does not generate temperatures high enough to melt iron and steel, but instead reduces the iron oxide ore into particles of pure iron, which then weld into a mass of sponge iron, consisting of lumps of impurities in a matrix of relatively pure iron, which is too soft to make a good blade. Carburizing thin iron bars or plates forms a layer of harder, high carbon steel on the surface, and early bladesmiths would forge these bars or plates together to form relatively homogeneous bars of steel. This laminating process, in which different types of steel together produce patterns that can be seen in the surface of the finished blade, forms the basis for pattern welding. [3] [4]

Pattern welding in Europe

Pattern welding dates to the first millennium BC, with Celtic, and later Germanic swords exhibiting the technique, [5] with the Romans describing the blade patternation. [6] [7] By the 2nd and 3rd century AD, the Celts commonly used pattern welding for decoration in addition to structural reasons. The technique involves folding and forging alternating layers of steel into rods, then twisting the steel to form complex patterns when forged into a blade. [3] By the 6th and 7th centuries, pattern welding had reached a level where thin layers of patterned steel were being overlaid onto a soft iron core, making the swords far better as the iron gave them a flexible and springy core that would take any shock from sword blows to stop the blade bending or snapping. By the end of the Viking era, pattern welding fell out of use in Europe. [4] [4] [8]

In medieval swords, pattern welding was more prevalent than commonly thought. However, the presence of rust makes detection difficult without repolishing. [7]

During the Middle ages, Wootz steel was produced in India and exported globally, including to Europe. The similarities in the markings led many to believe it was the same process being used, and pattern welding was revived by European smiths who were attempting to duplicate the Damascus steel. While the methods used by Damascus smiths to produce their blades was lost over the centuries, recent efforts by metallurgists and bladesmiths (such as Verhoeven and Pendray) to reproduce steel with identical characteristics have yielded a process that does not involve pattern welding. [3]

The ancient swordmakers exploited the aesthetic qualities of pattern welded steel. The Vikings, [9] in particular, were fond of twisting bars of steel around each other, welding the bars together by hammering and then repeating the process with the resulting bars, to create complex patterns in the final steel bar. Two bars twisted in opposite directions created the common chevron pattern. Often, the center of the blade was a core of soft steel, and the edges were solid high carbon steel, similar to the laminates of the Japanese. [10]

Modern decorative use

Pattern welding is still popular with contemporary bladesmiths both for visual effect and for recreating historic patterns and swords. [11] Modern steels and methods allow for patterns with much higher number of visible layers compared to historical artifacts. Large numbers of layers can either be produced by folding similar to historical processes or by forge welding a small number of layers together, then cutting the billet in pieces to stack and forge-weld it again. This can be repeated until the desired number of layers have been achieved. A blade ground from such a blank can show a pattern similar to wood grain with small random variations in pattern. Some manufactured objects can be re-purposed into pattern welded blanks. "Cable Damascus", forged from high carbon multi-strand cable, is a popular item for bladesmiths to produce, producing a finely grained, twisted pattern, while chainsaw chains produce a pattern of randomly positioned blobs of color. [12] [13] [14]

Some modern bladesmiths have taken pattern welding to new heights, with elaborate applications of traditional pattern welding techniques, as well as with new technology. A layered billet of steel rods with the blade blank cut perpendicular to the layers can also produce some spectacular patterns, including mosaics or even writing. Powder metallurgy allows alloys that would not normally be compatible to be combined into solid bars. Different treatments of the steel after it is ground and polished, such as bluing, etching, or various other chemical surface treatments that react differently to the different metals used can create bright, high-contrast finishes on the steel. Some master smiths go as far as to use techniques such as electrical discharge machining to cut interlocking patterns out of different steels, fit them together, then weld the resulting assembly into a solid block of steel. [14]

Blacksmiths will sometimes apply Wite-Out, Liquid Paper, or other types of correction fluid to metal that they want to not weld together, as the titanium dioxide in the correction fluid forms a barrier between the metal it is applied-to and any other pieces of metal. For example, when creating pattern-welded steel by filling a steel canister with pieces of metal and powdered steel and forging it together into a single mass ("canister damascus steel,") smiths frequently coat the inside of the canister with correction fluid and let it dry before adding their materials. Thus, when the canister is heated and compressed using a hammer or pneumatic press, the material on the inside of the correction fluid is forged together, but it does not forge to the canister, allowing the pattern created by forging the different materials together to be seen in the finished piece because it is not covered by the homologous steel of the canister.

Etymology

The term 'pattern welding' was coined by English archaeologist Herbert Maryon in a 1948 paper: "The welding of these swords represents an excessively difficult operation. I do not know of finer smith's work... I have named the technique ‘pattern welding’... Examples of pattern-welding range in date from the third century to the Viking Age." [15] [16] [17]

See also

Related Research Articles

<span class="mw-page-title-main">Damascus steel</span> Type of steel used in Middle Eastern swordmaking

Damascus steel was the forged steel of the blades of swords smithed in the Near East from ingots of Wootz steel either imported from Southern India or made in production centres in Sri Lanka, or Khorasan, Iran. These swords are characterized by distinctive patterns of banding and mottling reminiscent of flowing water, sometimes in a "ladder" or "rose" pattern. Such blades were reputed to be tough, resistant to shattering, and capable of being honed to a sharp, resilient edge.

A sword is an edged, bladed weapon intended for manual cutting or thrusting. Its blade, longer than a knife or dagger, is attached to a hilt and can be straight or curved. A thrusting sword tends to have a straighter blade with a pointed tip. A slashing sword is more likely to be curved and to have a sharpened cutting edge on one or both sides of the blade. Many swords are designed for both thrusting and slashing. The precise definition of a sword varies by historical epoch and geographic region.

<span class="mw-page-title-main">Blacksmith</span> Person who creates wrought iron or steel products by forging, hammering, bending, and cutting

A blacksmith is a metalsmith who creates objects primarily from wrought iron or steel, but sometimes from other metals, by forging the metal, using tools to hammer, bend, and cut. Blacksmiths produce objects such as gates, grilles, railings, light fixtures, furniture, sculpture, tools, agricultural implements, decorative and religious items, cooking utensils, and weapons. There was an historical distinction between the heavy work of the blacksmith and the more delicate operation of a whitesmith, who usually worked in gold, silver, pewter, or the finishing steps of fine steel. The place where a blacksmith works is called variously a smithy, a forge or a blacksmith's shop.

<span class="mw-page-title-main">Bulat steel</span> Steel alloy known in Russia from medieval times

Bulat is a type of steel alloy known in Russia from medieval times; it was regularly mentioned in Russian legends as the material of choice for cold steel. The name булат is a Russian transliteration of the Persian word fulad, meaning steel. This type of steel was used by the armies of nomadic peoples. Bulat steel was the main type of steel used for swords in the armies of Genghis Khan. Bulat Steel is generally agreed to be a Russian name for wootz steel, the production method of which has been lost for centuries, and the bulat steel used today makes use of a more recently developed technique.

<span class="mw-page-title-main">Wootz steel</span> Type of crucible steel

Wootz steel, also known as Seric steel, is a crucible steel characterized by a pattern of bands and high carbon content. These bands are formed by sheets of microscopic carbides within a tempered martensite or pearlite matrix in higher carbon steel, or by ferrite and pearlite banding in lower carbon steels. It was a pioneering steel alloy developed in southern India in the mid-1st millennium BC and exported globally.

Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process, although challenging, has been a method of joining metals used since ancient times and is a staple of traditional blacksmithing. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical welding and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.

<i>Mokume-gane</i> Japanese mixed-metal laminate

Mokume-gane (木目金) is a Japanese metalworking procedure which produces a mixed-metal laminate with distinctive layered patterns; the term is also used to refer to the resulting laminate itself. The term mokume-gane translates closely to "wood grain metal" or "wood eye metal" and describes the way metal takes on the appearance of natural wood grain. Mokume-gane fuses several layers of differently coloured precious metals together to form a sandwich of alloys called a "billet." The billet is then manipulated in such a way that a pattern resembling wood grain emerges over its surface. Numerous ways of working mokume-gane create diverse patterns. Once the metal has been rolled into a sheet or bar, several techniques are used to produce a range of effects.

<span class="mw-page-title-main">Kampilan</span> Sword

The kampilan is a type of single-edged sword, traditionally used by various ethnic groups in the Philippine archipelago. It has a distinct profile, with the tapered blade being much broader and thinner at the point than at its base, sometimes with a protruding spikelet along the flat side of the tip. The design of the pommel varies between ethnic groups, but it usually depicts either a buaya (crocodile), a bakunawa, a kalaw (hornbill), or a kakatua (cockatoo)..

Sword making, historically, has been the work of specialized smiths or metalworkers called bladesmiths or swordsmiths. Swords have been made of different materials over the centuries, with a variety of tools and techniques. While there are many criteria for evaluating a sword, generally the four key criteria are hardness, strength, flexibility and balance. Early swords were made of copper, which bends easily. Bronze swords were stronger; by varying the amount of tin in the alloy, a smith could make various parts of the sword harder or tougher to suit the demands of combat service. The Roman gladius was an early example of swords forged from blooms of steel.

<span class="mw-page-title-main">Viking sword</span> Sword

The Viking Age sword or Carolingian sword is the type of sword prevalent in Western and Northern Europe during the Early Middle Ages.

<span class="mw-page-title-main">Bladesmith</span> Person who uses an anvil and forge to make various types of blades

Bladesmithing is the art of making knives, swords, daggers and other blades using a forge, hammer, anvil, and other smithing tools. Bladesmiths employ a variety of metalworking techniques similar to those used by blacksmiths, as well as woodworking for knife and sword handles, and often leatherworking for sheaths. Bladesmithing is an art that is thousands of years old and found in cultures as diverse as China, Japan, India, Germany, Korea, the Middle East, Spain and the British Isles. As with any art shrouded in history, there are myths and misconceptions about the process. While traditionally bladesmithing referred to the manufacture of any blade by any means, the majority of contemporary craftsmen referred to as bladesmiths are those who primarily manufacture blades by means of using a forge to shape the blade as opposed to knifemakers who form blades by use of the stock removal method, although there is some overlap between both crafts.

<i>Hamon</i> (swordsmithing)

In swordsmithing, hamon (刃文) is a visible effect created on the blade by the hardening process. The hamon is the outline of the hardened zone which contains the cutting edge. Blades made in this manner are known as differentially hardened, with a harder cutting edge than spine. This difference in hardness results from clay being applied on the blade prior to the cooling process (quenching). Less or no clay allows the edge to cool faster, making it harder but more brittle, while more clay allows the center and spine to cool slower, thus retaining its resilience.

<span class="mw-page-title-main">Japanese swordsmithing</span> Process of forging bladed weapons

Japanese swordsmithing is the labour-intensive bladesmithing process developed in Japan beginning in the sixth century for forging traditionally made bladed weapons (nihonto) including katana, wakizashi, tantō, yari, naginata, nagamaki, tachi, nodachi, ōdachi, kodachi, and ya (arrow).

Swords made of iron appear from the Early Iron Age, but do not become widespread before the 8th century BC.

<span class="mw-page-title-main">Ulfberht swords</span> Type of medieval European sword

The Ulfberht swords are a group of about 170 medieval swords found primarily in Northern Europe, dated to the 9th to 11th centuries, with blades inlaid with the inscription +VLFBERH+T or +VLFBERHT+. The word "Ulfberht" is a Frankish personal name, possibly indicating the origin of the blades.

A laminated steel blade or piled steel is a knife, sword, or other tool blade made out of layers of differing types of steel, rather than a single homogeneous alloy. The earliest steel blades were laminated out of necessity, due to the early bloomery method of smelting iron, which made production of steel expensive and inconsistent. Laminated steel offered both a way to average out the properties of the steel, as well as a way to restrict high carbon steel to the areas that needed it most. Laminated steel blades are still produced today for specialized applications, where different requirements at different points in the blade are met by use of different alloys, forged together into a single blade.

The American Bladesmith Society, or ABS, is a non-profit organization composed of knifemakers whose primary function is to promote the techniques of forging steel blades. The ABS was founded by knifemaker William F. Moran, who came up with the concept in 1972 when he was Chairman of the Knifemakers' Guild; the following year, he introduced Damascus steel blades at an annual show. In 1976, he incorporated the organization, and it received non-profit status in 1985.

William Francis Moran Jr., also known as Bill Moran, was a pioneering American knifemaker who founded the American Bladesmith Society and reintroduced the process of making pattern welded steel to modern knife making. Moran's knives were sought after by celebrities and heads-of-state. The "William F. Moran School of Bladesmithing" bears his name and in addition to founding the ABS, he was a Blade Magazine Hall of Fame Member and a President of the Knifemakers' Guild.

Toledo steel, historically known for being unusually hard, is from Toledo, Spain, which has been a traditional sword-making, metal-working center since about the Roman period, and came to the attention of Rome when used by Hannibal in the Punic Wars. It soon became a standard source of weaponry for Roman legions.

<span class="mw-page-title-main">Badik</span> Knife, dagger

The badik or badek is a knife or dagger developed by the Bugis and Makassar people of southern Sulawesi, Indonesia.

References

  1. Birch 2013, pp. 127–134.
  2. Verhoeven 2002, p. 357.
  3. 1 2 3 Verhoeven 2002, pp. 356–365.
  4. 1 2 3 Peirce & Oakeshott 2004.
  5. Maryon, Herbert (1960). "Pattern-Welding and Damascening of Sword-Blades: Part 1 Pattern-Welding". Studies in Conservation. 5 (1): 25–37. doi:10.2307/1505063. ISSN   0039-3630. JSTOR   1505063.
  6. Randolph, Octavia. "Pattern Welded Swords". octavia.net. Retrieved 2020-07-30.
  7. 1 2 Williams 2012, p.  75.
  8. Peirce, Oakeshott & Jones 2007, p.  145.
  9. "Ancient blacksmiths were pioneers of modern welding". Welding Value. 2020-07-08. Retrieved 2021-12-19.
  10. Tylecote, Ronald F.; Gilmour, Brian J. J.; Tylecote, R. F.; Gilmour, B. J. J. (1986). The metallography of early ferrous edge tools and edged weapons. British archaeological reports British series. Oxford: British Archaeological Reports. ISBN   978-0-86054-401-2.
  11. "Pattern Welding Explained". Niels Provos. 2023-01-19. Retrieved 2023-05-19.
  12. Goddard 2000, pp. 107–120.
  13. Caffery, Ed. "Damascus Pictorial". Archived from the original on 2011-07-23.
  14. 1 2 Caffery, Ed. "Bits of Steel". Archived from the original on 2005-12-15 via Internet archive.
  15. Maryon, Herbert (1948). "A Sword of the Nydam Type from Ely Fields Farm, near Ely". Proceedings of the Cambridge Antiquarian Society. XLI: 73–76. doi:10.5284/1034398
  16. Bruce-Mitford, Rupert (1949). "The Sutton Hoo Ship-Burial: Recent Theories and Some Comments on General Interpretation" (PDF). Proceedings of the Suffolk Institute of Archaeology. Ipswich. XXV (1): p. 67 n. 269
  17. Maryon, Herbert (February 1960). "Pattern-Welding and Damascening of Sword-Blades—Part 1: Pattern-Welding". Studies in Conservation. 5 (1): p. 26. JSTOR 1505063

Sources