Carbonization

Last updated

Carbonization or carbonisation is the conversion of organic matters like plants and dead animal remains into carbon [1] through destructive distillation.

Contents

Complexity in carbonization

A series of processes that involve carbonization. Carbonization Link Map - 1.png
A series of processes that involve carbonization.

Carbonization is a pyrolytic reaction, therefore, is considered a complex process in which many reactions take place concurrently such as dehydrogenation, condensation, hydrogen transfer and isomerization.

Carbonization differs from coalification in that it occurs much faster, due to its reaction rate being faster by many orders of magnitude.

For the final pyrolysis temperature, the amount of heat applied controls the degree of carbonization and the residual content of foreign elements. For example, at T ~ 1200 K the carbon content of the residue exceeds a mass fraction of 90 wt.%, whereas at T ~ 1600 K more than 99 wt.% carbon is found. [2] Carbonization is often exothermic, which means that it could in principle be made self-sustaining and be used as a source of energy that does not produce carbon dioxide. [3] In the case of glucose, the reaction releases about 237 calories per gram.

When biomaterial is exposed to sudden searing heat (as in the case of a nuclear explosion or pyroclastic flow from a volcano, for instance), it can be carbonized extremely quickly, turning it into solid carbon. In the destruction of Herculaneum by a volcano, many organic objects such as wooden furniture were carbonized by the intense heat.

How wood is transformed into charcoal

The carbonization of wood in an industrial setting usually requires a temperature above 280 °C, which frees up energy and hence this reaction is said to be exothermic. This carbonization, which can also be seen as a spontaneous breakdown of the wood, continues until only the carbonised residue called charcoal remains. Unless further external heat is provided, the process stops and the temperature reaches a maximum of about 400 °C. This charcoal, however, will still contain appreciable amounts of tar residue, together with the ash of the original wood. [4]

Industrial safety in carbonization

Carbonization produces substances which can prove harmful and simple precautions should be taken to reduce risks.

The gas produced by carbonization has a high content of carbon monoxide which is poisonous when breathed. Therefore, when working around the kiln or pit during operation and when the kiln is opened for unloading, care must be taken that proper ventilation is provided to allow the carbon monoxide, which is also produced during unloading through spontaneous ignition of the hot fuel, to be dispersed.

The tars and smoke produced from carbonization, although not directly poisonous, may have long-term damaging effects on the respiratory system. Housing areas should, where possible, be located so that prevailing winds carry smoke from charcoal operations away from them and batteries of kilns should not be located in close proximity to housing areas.

Wood tars and pyroligneous acid can be irritant to skin and care should be taken to avoid prolonged skin contact by providing protective clothing and adopting working procedures which minimize exposure.

The tars and pyroligneous liquors can also seriously contaminate streams and affect drinking water supplies for humans and animals. Fish may also be adversely affected. Liquid effluents and waste water from medium and large scale charcoal operations should be trapped in large settling ponds and allowed to evaporate so that this water does not pass into the local drainage system and contaminate streams. Kilns and pits, as distinct from retorts and other sophisticated systems, do not normally produce liquid effluent - the by-products are mostly dispersed into the air as vapours. Precautions against airborne contamination of the environment are of greater importance in this case. [5]

Carbonization and biodiesel fuels

In one study, [6] carbonization was used to create a new catalyst for the generation of biodiesel from ethanol and fatty acids. The catalyst was created by carbonization of simple sugars such as glucose and sucrose. The sugars were processed for 15 hours at 400 °C under a nitrogen flow to a black carbon residue consisting of a complex mixture of polycyclic aromatic carbon sheets. This material was then treated with sulfuric acid, which functionalized the sheets with sulfonite, carboxyl, and hydroxyl catalytic sites.

See also

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction between a fuel and oxygen

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

<span class="mw-page-title-main">Exothermic process</span> Thermodynamic process that releases energy to its surroundings

In thermodynamics, an exothermic process is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light, electricity, or sound. The term exothermic was first coined by 19th-century French chemist Marcellin Berthelot.

<span class="mw-page-title-main">Coke (fuel)</span> Coal product used in making steel

Coke is a grey, hard, and porous coal-based fuel with a high carbon content and few impurities, made by heating coal or oil in the absence of air—a destructive distillation process. It is an important industrial product, used mainly in iron ore smelting, but also as a fuel in stoves and forges when air pollution is a concern.

<span class="mw-page-title-main">Producer gas</span> Obsolete form of gas fuel

Producer gas is fuel gas that is manufactured by blowing through a coke or coal fire with air and steam simultaneously. It mainly consists of carbon monoxide (CO), hydrogen (H2), as well as substantial amounts of nitrogen (N2). The caloric value of the producer gas is low (mainly because of its high nitrogen content), and the technology is obsolete. Improvements over producer gas, also obsolete, include water gas where the solid fuel is treated intermittently with air and steam and, far more efficiently synthesis gas where the solid fuel is replaced with methane.

<span class="mw-page-title-main">Pyrolysis</span> Thermal decomposition of materials at elevated temperatures, often in an inert atmosphere

The pyrolysis process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere.

Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities.

<span class="mw-page-title-main">Dry distillation</span> Heating of solids to produce gases

Dry distillation is the heating of solid materials to produce gaseous products. The method may involve pyrolysis or thermolysis, or it may not.

<span class="mw-page-title-main">Liquid smoke</span> Edible chemical compound

Liquid smoke is a water-soluble yellow to red liquid used as a flavoring as a substitute for cooking with wood smoke while retaining a similar flavor. It can be used to flavor any meat or vegetable. It is available as pure condensed smoke from various types of wood, and as derivative formulas containing additives.

<span class="mw-page-title-main">Sabatier reaction</span> Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:

<span class="mw-page-title-main">Destructive distillation</span> Chemical process

Destructive distillation is a chemical process in which decomposition of unprocessed material is achieved by heating it to a high temperature; the term generally applies to processing of organic material in the absence of air or in the presence of limited amounts of oxygen or other reagents, catalysts, or solvents, such as steam or phenols. It is an application of pyrolysis. The process breaks up or 'cracks' large molecules. Coke, coal gas, gaseous carbon, coal tar, ammonia liquor, and coal oil are examples of commercial products historically produced by the destructive distillation of coal.

<span class="mw-page-title-main">Boudouard reaction</span> Disproportionation of CO into CO2 and elemental carbon

The Boudouard reaction, named after Octave Leopold Boudouard, is the redox reaction of a chemical equilibrium mixture of carbon monoxide and carbon dioxide at a given temperature. It is the disproportionation of carbon monoxide into carbon dioxide and graphite or its reverse:

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.

Pyrolysis oil, sometimes also known as bio-crude or bio-oil, is a synthetic fuel with limited industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.

<span class="mw-page-title-main">Bamboo charcoal</span> Charcoal made from bamboo

Bamboo charcoal is charcoal made from species of bamboo. Bamboo charcoal is typically made from the culms or refuse of mature bamboo plants and burned in ovens at temperatures ranging from 600 to 1200 °C. It is an especially porous charcoal, making it useful in the manufacture of activated carbon.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

<span class="mw-page-title-main">Slash-and-char</span> Farming method for clearing vegetation

Slash-and-char is an alternative to slash-and-burn that has a lesser effect on the environment. It is the practice of charring the biomass resulting from the slashing, instead of burning it. Due to incomplete combustion (pyrolysis) the resulting residue matter charcoal can be utilized as biochar to improve the soil fertility.

Reactive flash volatilization (RFV) is a chemical process that rapidly converts nonvolatile solids and liquids to volatile compounds by thermal decomposition for integration with catalytic chemistries.

<span class="mw-page-title-main">Charcoal</span> Lightweight black carbon residue

Charcoal is a lightweight black carbon residue produced by strongly heating wood in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, called charcoal burning, often by forming a charcoal kiln, the heat is supplied by burning part of the starting material itself, with a limited supply of oxygen. The material can also be heated in a closed retort. Modern "charcoal" briquettes used for outdoor cooking may contain many other additives, e.g. coal.

<span class="mw-page-title-main">Hydrothermal carbonization</span>

Hydrothermal carbonization (HTC) is a chemical process for the conversion of organic compounds to structured carbons. It can be used to make a wide variety of nanostructured carbons, simple production of brown coal substitute, synthesis gas, liquid petroleum precursors and humus from biomass with release of energy. Technically the process imitates, within a few hours, the brown coal formation process which takes place in nature over enormously longer geological time periods of 50,000 to 50 million years. It was investigated by Friedrich Bergius and first described in 1913.

Potassium methoxide is the alkoxide of methanol with the counterion potassium and is used as a strong base and as a catalyst for transesterification, in particular for the production of biodiesel.

References

  1. Anderson, L.A. (2023). "A chemical framework for the preservation of fossil vertebrate cells and soft tissues". Earth-Science Reviews. 240: 104367. doi: 10.1016/j.earscirev.2023.104367 .
  2. 1 2 Nic, M. (2014). "Carbonization". The IUPAC Compendium of Chemical Terminology. IUPAC Gold Book. doi:10.1351/goldbook.C00840.
  3. "Burying biomass to fight climate change" by Richard Lovett, New Scientist, 3 May 2008, pp. 32-5.
  4. Emrich, Walter. "Transformation of Wood into Charcoal".
  5. "Simple Technologies in Charcoal Making". Food and Agriculture Organization of the United Nations.
  6. Green chemistry: Biodiesel made with sugar catalyst Masakazu Toda, Atsushi Takagaki, Mai Okamura, Junko N. Kondo, Shigenobu Hayashi, Kazunari Domen and Michikazu Hara Nature 438, 178 (10 November 2005) doi : 10.1038/438178a Abstract