Aziridine

Last updated
Aziridine
Aziridine.svg
Aziridine3d.png
Names
Preferred IUPAC name
Aziridine
Systematic IUPAC name
Azacyclopropane
Other names
Azirane
Ethylene imine
Aminoethylene
Dimethyleneimine
Dimethylenimine
Ethylimine
Identifiers
3D model (JSmol)
102380
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.268 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-793-9
616
KEGG
PubChem CID
RTECS number
  • KX5075000
UNII
UN number 1185
  • InChI=1S/C2H5N/c1-2-3-1/h3H,1-2H2 Yes check.svgY
    Key: NOWKCMXCCJGMRR-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C2H5N/c1-2-3-1/h3H,1-2H2
    Key: NOWKCMXCCJGMRR-UHFFFAOYAE
  • C1CN1
Properties
C2H5N
Molar mass 43.069 g·mol−1
AppearanceColorless oily liquid [1]
Odor ammonia-like [2]
Density 0.8321 g/mL 20 °C [3]
Melting point −77.9 °C (−108.2 °F; 195.2 K)
Boiling point 56 °C (133 °F; 329 K)
miscible
Vapor pressure 160 mmHg (20°C) [2]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
highly flammable and toxic
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H225, H300, H310, H314, H330, H340, H350, H411
P201, P202, P210, P233, P240, P241, P242, P243, P260, P262, P264, P270, P271, P273, P280, P281, P284, P301+P310, P301+P330+P331, P302+P350, P303+P361+P353, P304+P340, P305+P351+P338, P308+P313, P310, P320, P321, P322, P330, P361, P363, P370+P378, P391, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
4
3
3
Flash point −11 °C (12 °F; 262 K)
322 °C (612 °F; 595 K)
Explosive limits 3.6–46%
Lethal dose or concentration (LD, LC):
250 ppm (rat, 1 hr)
250 ppm (guinea pig, 1 hr)
62 ppm (rat, 4 hr)
223 ppm (mouse, 2 hr)
56 ppm (rat, 2 hr)
2236 ppm (mouse, 10 min) [4]
25 ppm (guinea pig, 8 hr)
56 ppm (rabbit, 2 hr) [4]
NIOSH (US health exposure limits):
PEL (Permissible)
OSHA-Regulated Carcinogen [2]
REL (Recommended)
Ca [2]
IDLH (Immediate danger)
Ca [100 ppm] [2]
Related compounds
Related heterocycles
Borirane
Ethylene oxide
Thiirane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Aziridine is an organic compound consisting of the three-membered heterocycle C2H5N. [5] [6] It is a colorless, toxic, volatile liquid that is of significant practical interest. [7] Aziridine was discovered in 1888 by the chemist Siegmund Gabriel. [8] Its derivatives, also referred to as aziridines, are of broader interest in medicinal chemistry.

Contents

Structure

The bond angles in aziridine are approximately 60°, considerably less than the normal hydrocarbon bond angle of 109.5°, which results in angle strain as in the comparable cyclopropane and ethylene oxide molecules. A banana bond model explains bonding in such compounds. Aziridine is less basic than acyclic aliphatic amines, with a pKa of 7.9 for the conjugate acid, due to increased s character of the nitrogen free electron pair. Angle strain in aziridine also increases the barrier to nitrogen inversion. This barrier height permits the isolation of separate invertomers, for example the cis and trans invertomers of N-chloro-2-methylaziridine.

Synthesis and uses

Linear PEI.png
Linear polyethylenimine (PEI) fragment, derived from aziridine.
Branched PEI.png
Typical branched PEI fragment, derived from aziridine.

Aziridine is produced industrially from aminoethanol via two related routes. The Nippon Shokubai process requires an oxide catalyst and high temperatures to effect the dehydration. In the Wenker synthesis, the aminoethanol is converted to the sulfate ester, which undergoes base-induced sulfate elimination. Older methods entailed amination of 1,2-dichloroethane and cyclization of 2-chloroethylamine. [7]

Aziridine forms a wide variety of polymeric derivatives, known as polyethylenimines (PEI). These and related species are useful crosslinking agents and precursors for coatings. [7]

Safety

Aziridine is highly toxic with an LD50 of 14 mg (oral, rats). It is a skin irritant. As an alkylating agent, it is also a mutagen. [7] It is reactive toward DNA, potentially relevant to its mutagenicity. Aziridine containing compounds also appear to be similarly dangerous. [9] [10] [11]

See also

Related Research Articles

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Acridine</span> Chemical compound

Acridine is an organic compound and a nitrogen heterocycle with the formula C13H9N. Acridines are substituted derivatives of the parent ring. It is a planar molecule that is structurally related to anthracene with one of the central CH groups replaced by nitrogen. Like the related molecules pyridine and quinoline, acridine is mildly basic. It is an almost colorless solid, which crystallizes in needles. There are few commercial applications of acridines; at one time acridine dyes were popular, but they are now relegated to niche applications, such as with acridine orange. The name is a reference to the acrid odour and acrid skin-irritating effect of the compound.

<span class="mw-page-title-main">Hydrazine</span> Colorless flammable liquid with an ammonia-like odor

Hydrazine is an inorganic compound with the chemical formula N2H4. It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine hydrate.

<span class="mw-page-title-main">Nickel tetracarbonyl</span> Chemical compound

Nickel carbonyl (IUPAC name: tetracarbonylnickel) is a nickel(0) organometallic compound with the formula Ni(CO)4. This colorless liquid is the principal carbonyl of nickel. It is an intermediate in the Mond process for producing very high-purity nickel and a reagent in organometallic chemistry, although the Mond Process has fallen out of common usage due to the health hazards in working with the compound. Nickel carbonyl is one of the most dangerous substances yet encountered in nickel chemistry due to its very high toxicity, compounded with high volatility and rapid skin absorption.

<span class="mw-page-title-main">Nitrogen dioxide</span> Chemical compound with formula NO₂

Nitrogen dioxide is a chemical compound with the formula NO2. One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic, bent molecule with C2v point group symmetry. Industrially, NO2 is an intermediate in the synthesis of nitric acid, millions of tons of which are produced each year, primarily for the production of fertilizers.

<span class="mw-page-title-main">Dichloromethane</span> Chemical compound

Dichloromethane is an organochlorine compound with the formula CH2Cl2. This colorless, volatile liquid with a chloroform-like, sweet odor is widely used as a solvent. Although it is not miscible with water, it is slightly polar, and miscible with many organic solvents.

Acrylonitrile is an organic compound with the formula CH2CHCN and the structure H2C=CH−C≡N. It is a colorless, volatile liquid. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses.

<i>p</i>-Phenylenediamine Chemical compound

p-Phenylenediamine (PPD) is an organic compound with the formula C6H4(NH2)2. This derivative of aniline is a white solid, but samples can darken due to air oxidation. It is mainly used as a component of engineering polymers and composites like kevlar. It is also an ingredient in hair dyes and is occasionally used as a substitute for henna.

Cyanogen chloride is a highly toxic chemical compound with the formula CNCl. This linear, triatomic pseudohalogen is an easily condensed colorless gas. More commonly encountered in the laboratory is the related compound cyanogen bromide, a room-temperature solid that is widely used in biochemical analysis and preparation.

<span class="mw-page-title-main">Barium nitrate</span> Chemical compound

Barium nitrate is the inorganic compound with the chemical formula Ba(NO3)2. It, like most barium salts, is colorless, toxic, and water-soluble. It burns with a green flame and is an oxidizer; the compound is commonly used in pyrotechnics.

<span class="mw-page-title-main">Dimethyl sulfate</span> Chemical compound

Dimethyl sulfate (DMS) is a chemical compound with formula (CH3O)2SO2. As the diester of methanol and sulfuric acid, its formula is often written as (CH3)2SO4 or Me2SO4, where CH3 or Me is methyl. Me2SO4 is mainly used as a methylating agent in organic synthesis.

<span class="mw-page-title-main">Hexamethylphosphoramide</span> Chemical compound

Hexamethylphosphoramide, often abbreviated HMPA, is a phosphoramide (an amide of phosphoric acid) with the formula [(CH3)2N]3PO. This colorless liquid is a useful reagent in organic synthesis.

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

<span class="mw-page-title-main">1,4-Benzoquinone</span> Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

<span class="mw-page-title-main">Aziridines</span> Functional group made of a carbon-carbon-nitrogen heterocycle

In organic chemistry, aziridines are organic compounds containing the aziridine functional group, a three-membered heterocycle with one amine and two methylene bridges. The parent compound is aziridine, with molecular formula C2H4NH. Several drugs feature aziridine rings, including mitomycin C, porfiromycin, and azinomycin B (carzinophilin).

4-Aminobiphenyl (4-APB) is an organic compound with the formula C6H5C6H4NH2. It is an amine derivative of biphenyl. It is a colorless solid, although aged samples can appear colored. 4-Aminobiphenyl was commonly used in the past as a rubber antioxidant and an intermediate for dyes. Exposure to this aryl-amine can happen through contact with chemical dyes and from inhalation of cigarette smoke. Researches showed that 4-aminobiphenyl is responsible for bladder cancer in humans and dogs by damaging DNA. Due to its carcinogenic effects, commercial production of 4-aminobiphenyl ceased in the United States in the 1950s.

<span class="mw-page-title-main">Chloroacetaldehyde</span> Chemical compound

Chloroacetaldehyde is an organic compound with the formula ClCH2CHO. Like some related compounds, it is highly electrophilic reagent and a potentially dangerous alkylating agent. The compound is not normally encountered in the anhydrous form, but rather as the hemiacetal (ClCH2CH(OH))2O.

4-Nitrotoluene or para-nitrotoluene is an organic compound with the formula CH3C6H4NO2. It is a pale yellow solid. It is one of three isomers of nitrotoluene.

Propyleneimine (or propylene imine) is the organic compound with the formula CH3CH(NH)CH2. It is a secondary amine and the smallest chiral aziridine (ring containing C2N). It is a flammable colorless liquid. Its derivatives, copolymers and oligomers, are of commercial interest.

References

  1. "Aziridine" (PDF). Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 71. 1999.
  2. 1 2 3 4 5 NIOSH Pocket Guide to Chemical Hazards. "#0274". National Institute for Occupational Safety and Health (NIOSH).
  3. Weast, Robert C.; et al. (1978). CRC Handbook of Chemistry and Physics (59th ed.). West Palm Beach, FL: CRC Press. ISBN   0-8493-0549-7 .
  4. 1 2 "Ethyleneimine". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. Gilchrist, T.L. (1987). Heterocyclic chemistry. ISBN   978-0-582-01421-3.
  6. Epoxides and aziridines – A mini review Albert Padwa, S. Shaun Murphree Arkivoc (JC-1522R) pp. 6–33 Online article
  7. 1 2 3 4 Steuerle, Ulrich; Feuerhake, Robert (2006). "Aziridines". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_239.pub2. ISBN   978-3527306732.
  8. Gabriel, S. (1888). "Ueber Vinylamin und Bromäthylamin. (II.)". Berichte der Deutschen Chemischen Gesellschaft. 21 (2): 2664–2669. doi:10.1002/cber.18880210287. ISSN   1099-0682.
  9. Kanerva L, Keskinen H, Autio P, Estlander T, Tuppurainen M, Jolanki R (May 1995). "Occupational respiratory and skin sensitization caused by polyfunctional aziridine hardener". Clin Exp Allergy. 25 (5): 432–9. doi:10.1111/j.1365-2222.1995.tb01074.x. PMID   7553246. S2CID   28101810.
  10. Sartorelli P, Pistolesi P, Cioni F, Napoli R, Sisinni AG, Bellussi L, Passali GC, Cherubini Di Simplicio E, Flori L (2003). "Skin and respiratory allergic disease caused by polyfunctional aziridine". Med Lav. 94 (3): 285–95. PMID   12918320.
  11. Mapp CE (2001). "Agents, old and new, causing occupational asthma". Occup. Environ. Med. 58 (5): 354–60. doi:10.1136/oem.58.5.354. PMC   1740131 . PMID   11303086.