Melphalan flufenamide

Last updated

Melphalan flufenamide
Melphalan flufenamide.svg
Clinical data
Trade names Pepaxto, Pepaxti
Other namesMelflufen, 4-[Bis-(2-chloroethyl)amino]-L-phenylalanine-4-fluoro-L-phenylalanine ethyl ester, J1 [1] [2]
AHFS/Drugs.com Monograph
License data
Routes of
administration
Intravenous
ATC code
Legal status
Legal status
  • US:Withdrawn from market [3] [4]
  • EU:Rx-only [5]
Pharmacokinetic data
Metabolism hydrolysis
Identifiers
  • Ethyl (2S)-2-[[(2S)-2-amino-3-[4-[bis(2-chloroethyl)amino]phenyl]propanoyl]amino]-3-(4-fluorophenyl)propanoate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C24H30Cl2FN3O3
Molar mass 498.42 g·mol−1
3D model (JSmol)
  • CCOC(=O)[C@H](CC1=CC=C(C=C1)F)NC(=O)[C@H](CC2=CC=C(C=C2)N(CCCl)CCCl)N
  • InChI=1S/C24H30Cl2FN3O3/c1-2-33-24(32)22(16-18-3-7-19(27)8-4-18)29-23(31)21(28)15-17-5-9-20(10-6-17)30(13-11-25)14-12-26/h3-10,21-22H,2,11-16,28H2,1H3,(H,29,31)/t21-,22-/m0/s1
  • Key:YQZNKYXGZSVEHI-VXKWHMMOSA-N

Melphalan flufenamide, sold under the brand names Pepaxto and Pepaxti, is an anticancer medication used to treat multiple myeloma. [6] [7]

Contents

The most common adverse reactions include fatigue, nausea, diarrhea, elevated body temperature and respiratory tract infections. [6] [8]

Melphalan flufenamide was approved for medical use in the United States in February 2021, [7] [9] [8] and in the European Union in August 2022. [5]

Medical uses

In the United States before market withdrawal, melphalan flufenamide was indicated in combination with dexamethasone for the treatment of adults with relapsed or refractory multiple myeloma, with relapsed or refractory multiple myeloma who have received at least four prior lines of therapy and whose disease is refractory to at least one proteasome inhibitor, one immunomodulatory agent, and one CD-38 directed monoclonal antibody. [6] [7] [8]

In the European Union, melphalan flufenamide is indicated, in combination with dexamethasone, for the treatment of adults with multiple myeloma who have received at least three prior lines of therapies, whose disease is refractory to at least one proteasome inhibitor, one immunomodulatory agent, and one anti-CD38 monoclonal antibody, and who have demonstrated disease progression on or after the last therapy. [5]

Metabolism

Melphalan flufenamide is metabolized by aminopeptidase hydrolysis and by spontaneous hydrolysis on N-mustard. [10]

Origin and development

Melphalan flufenamide is a peptidase enhanced cytotoxic (PEnC) with a targeted delivery within tumor cells of melphalan, a widely used classical chemotherapeutic belonging to a group of alkylating agents developed more than 50 years ago. Substantial clinical experience has been accumulated about melphalan since then. Numerous derivatives of melphalan, designed to increase the activity or selectivity, have been developed and investigated in vitro or in animal models. [11] Melphalan flufenamide was synthesized, partly due to previous experience of an alkylating peptide cocktail named Peptichemio [12]

Pharmacology

Compared to melphalan, melphalan flufenamide exhibits significantly higher in vitro and in vivo activity in several models of human cancer. [1] [2] [13] [14] [15] [12] [16] [17] A preclinical study, performed at Dana–Farber Cancer Institute, demonstrated that melphalan flufenamide induced apoptosis in multiple myeloma cell lines, even those resistant to conventional treatment (including melphalan). [16] In vivo effects in xenografted animals were also observed, and the results confirmed by M Chesi and co-workers – in a unique genetically engineered mouse model of multiple myeloma – are believed to be predictive of clinical efficacy. [18]

Structure

Chemically, the drug is best described as the ethyl ester of a dipeptide consisting of melphalan and the amino acid 4-fluoro-L-phenylalanine.

Pharmacokinetics

Pharmacokinetic analysis of plasma samples showed a rapid formation of melphalan; concentrations generally exceeded those of melphalan flufenamide during ongoing infusion. Melphalan flufenamide rapidly disappeared from plasma after infusion, while melphalan typically peaked a few minutes after the end of infusion. This suggests that melphalan flufenamide is rapidly and widely distributed to extravasal tissues, in which melphalan is formed and thereafter redistributed to plasma. [1]

This rapid disappearance from plasma is likely due to hydrolytic enzymes. [19] The Zn(2+) dependent ectopeptidase (also known as alanine aminopeptidase), degrades proteins and peptides with a N-terminal neutral amino acid. Aminopeptidase N is frequently overexpressed in tumors and has been associated with the growth of different human cancers suggesting it as a suitable target for anti-cancerous therapy. [20]

Adverse effects

In a human Phase 1 trial, no dose-limiting toxicities (DLTs) were observed at lower doses. At doses above 50 mg, reversible neutropenias and thrombocytopenias were observed, and particularly evident in heavily pretreated patients. [1] These side-effects are shared by most chemotherapies, including alkylating agents in general.

Drug interactions

No drug interaction studies have been reported. Several in vitro studies indicate that melphalan flufenamide may be successfully combined with standard chemotherapy or targeted agents. [21] [16]

Therapeutic efficacy

In a Phase 1/2 trial, in solid tumor patients refractory to standard therapy, response evaluation showed disease stabilization in a majority of patients. [1] [17] In relapsed and refractory multiple-myeloma (RRMM) patients, promising activity was seen in heavily pre-treated RRMM patients where conventional therapies had failed; the median Progression-Free Survival was 9.4 months and the Duration of Response was 9.6 months. [22]

History

Efficacy was evaluated in HORIZON (NCT02963493), a multicenter, single-arm trial. [6] Eligible patients were required to have relapsed refractory multiple myeloma. [6] Patients received melphalan flufenamide 40 mg intravenously on day 1 and dexamethasone 40 mg orally (20 mg for patients ≥75 years of age) on day 1, 8, 15 and 22 of each 28-day cycle until disease progression or unacceptable toxicity. [6] Efficacy was evaluated in a subpopulation of 97 patients who received four or more prior lines of therapy and were refractory to at least one proteasome inhibitor, one immunomodulatory agent, and a CD38-directed antibody. [6] The U.S. Food and Drug Administration (FDA) approved melphalan flufenamide based on evidence from a clinical trial of 157 adults with multiple myeloma. [8] The trial was conducted at 17 sites in four countries in Spain, France, Italy and the US. [8]

The FDA granted the application for melphalan flufenamide under the priority review and orphan drug programs. [6] [23]

In October 2021, Oncopeptides AB announced the withdrawal of Pepaxto from the US market after the OCEAN trial's data showed no improvement in terms of overall survival versus pomalidomide in the ITT group (19.8 months in the melphalan flufenamide group versus 25.0 months in the pomalidomide group, HR 1.10, 95% CI 0.85–1.44, p = 0,47). [24] [25]

Society and culture

In June 2022, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) adopted a positive opinion, recommending the granting of a marketing authorisation for the medicinal product Pepaxti, intended for the treatment of multiple myeloma. [26] The applicant for this medicinal product is Oncopeptides AB. [26] Melphalan flufenamide was approved for medical use in the European Union in August 2022. [5] [27]

Names

Melphalan flufenamide is the international nonproprietary name (INN). [28]

Related Research Articles

<span class="mw-page-title-main">Multiple myeloma</span> Cancer of plasma cells

Multiple myeloma (MM), also known as plasma cell myeloma and simply myeloma, is a cancer of plasma cells, a type of white blood cell that normally produces antibodies. Often, no symptoms are noticed initially. As it progresses, bone pain, anemia, renal insuficiency, and infections may occur. Complications may include hypercalcemia and amyloidosis.

<span class="mw-page-title-main">Lenalidomide</span> Pair of enantiomers

Lenalidomide, sold under the brand name Revlimid among others, is a medication used to treat multiple myeloma, smoldering myeloma, and myelodysplastic syndromes (MDS). For multiple myeloma, it is a first line treatment, and is given with dexamethasone. It is taken by mouth.

<span class="mw-page-title-main">Bortezomib</span> Chemical compound

Bortezomib, sold under the brand name Velcade among others, is an anti-cancer medication used to treat multiple myeloma and mantle cell lymphoma. This includes multiple myeloma in those who have and have not previously received treatment. It is generally used together with other medications. It is given by injection.

<span class="mw-page-title-main">Proteasome inhibitor</span>

Proteasome inhibitors are drugs that block the action of proteasomes, cellular complexes that break down proteins. They are being studied in the treatment of cancer; three are approved for use in treating multiple myeloma.

<span class="mw-page-title-main">Plitidepsin</span> Chemical compound

Plitidepsin is a chemical compound extracted from the ascidian Aplidium albicans. It is currently undergoing clinical trial testing. It is a member of the class of compounds known as didemnins.

Elotuzumab, sold under the brand name Empliciti, is a humanized IgG1 monoclonal antibody medication used in combination with lenalidomide and dexamethasone, for adults that have received 1 to 3 prior therapies for the treatment of multiple myeloma. It is also indicated for adult patients in combination with pomalidomide and dexamethasone, who have received 2 prior therapies including lenalidomide and a protease inhibitor. Administration of elotuzumab is done intravenously. Each intravenous injection of elotuzumab should be premedicated with dexamethasone, diphenhydramine, ranitidine and acetaminophen. It is being developed by Bristol Myers Squibb and AbbVie.

Milatuzumab is an anti-CD74 humanized monoclonal antibody for the treatment of multiple myeloma non-Hodgkin's lymphoma and chronic lymphocytic leukemia.

<span class="mw-page-title-main">Panobinostat</span> Chemical compound

Panobinostat, sold under the brand name Farydak, is a medication used for the treatment of multiple myeloma. It is a hydroxamic acid and acts as a non-selective histone deacetylase inhibitor.

<span class="mw-page-title-main">Pomalidomide</span> Chemical compound

Pomalidomide, sold under the brand names Pomalyst and Imnovid, is an anti-cancer medication used for the treatment of multiple myeloma and AIDS-related Kaposi sarcoma.

<span class="mw-page-title-main">Carfilzomib</span> Chemical compound

Carfilzomib, sold under the brand name Kyprolis, is an anti-cancer medication acting as a selective proteasome inhibitor. Chemically, it is a tetrapeptide epoxyketone and an analog of epoxomicin. It was developed by Onyx Pharmaceuticals.

<span class="mw-page-title-main">Perifosine</span> Chemical compound

Perifosine is a former drug candidate that was under development for a variety of cancer indications. It is an alkyl-phospholipid structurally related to miltefosine. Perifosine interrupts the PI3K/AKT/mTOR pathway by acting as an allosteric AKT inhibitor targeting the pleckstrin homology domain of AKT. It was being developed by Keryx Biopharmaceuticals who had licensed it from Æterna Zentaris Inc.

<span class="mw-page-title-main">Daratumumab</span> Monoclonal antibody

Daratumumab, sold under the brand name Darzalex, is an anti-cancer monoclonal antibody medication. It binds to CD38, which is overexpressed in multiple myeloma cells. Daratumumab was originally developed by Genmab, but it is now being jointly developed by Genmab along with the Johnson & Johnson subsidiary Janssen Biotech, which acquired worldwide commercialization rights to the drug from Genmab.

<span class="mw-page-title-main">Sonidegib</span> Chemical compound

Sonidegib (INN), sold under the brand name Odomzo, is a medication used to treat cancer.

MDX-1097 is a monoclonal antibody therapy that in 2023 has been assessed in a Phase IIb clinical trial in conjunction with lenalidomide and dexamethasone as a treatment for multiple myeloma, a type of white blood cell cancer. MDX-1097 was originally developed by scientists at Immune System Therapeutics Ltd. In 2015, Haemalogix Ltd acquired the rights to MDX-1097 and are taking it through clinical testing.

<span class="mw-page-title-main">Isatuximab</span> Monoclonal antibody

Isatuximab, sold under the brand name Sarclisa, is a monoclonal antibody (mAb) medication for the treatment of multiple myeloma.

<span class="mw-page-title-main">Ixazomib</span> Chemical compound

Ixazomib is a drug for the treatment of multiple myeloma, a type of white blood cell cancer, in combination with other drugs. It is taken by mouth in the form of capsules.

<span class="mw-page-title-main">Selinexor</span> Anti-cancer drug

Selinexor sold under the brand name Xpovio among others, is a selective inhibitor of nuclear export used as an anti-cancer medication. It works by blocking the action of exportin 1 and thus blocking the transport of several proteins involved in cancer-cell growth from the cell nucleus to the cytoplasm, which ultimately arrests the cell cycle and leads to apoptosis. It is the first drug with this mechanism of action.

Daratumumab/hyaluronidase, sold under the brand name Darzalex Faspro, is a fixed-dose combination medication for the treatment of adults with newly diagnosed or relapsed/refractory multiple myeloma. It is a combination of daratumumab and hyaluronidase. It is administered via subcutaneous injection.

Belantamab mafodotin, sold under the brand name Blenrep, is a medication for the treatment of relapsed and refractory multiple myeloma.

Idecabtagene vicleucel, sold under the brand name Abecma, is a cell-based gene therapy to treat multiple myeloma.

References

  1. 1 2 3 4 5 Berglund Å, Ullén A, Lisyanskaya A, Orlov S, Hagberg H, Tholander B, et al. (December 2015). "First-in-human, phase I/IIa clinical study of the peptidase potentiated alkylator melflufen administered every three weeks to patients with advanced solid tumor malignancies". Investigational New Drugs. 33 (6): 1232–1241. doi:10.1007/s10637-015-0299-2. PMID   26553306. S2CID   8207569.
  2. 1 2 Strese S, Wickström M, Fuchs PF, Fryknäs M, Gerwins P, Dale T, et al. (October 2013). "The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo". Biochemical Pharmacology. 86 (7): 888–895. doi:10.1016/j.bcp.2013.07.026. PMID   23933387.
  3. "FDA issues final decision to withdraw approval of Pepaxto (melphalan flufenamide)". U.S. Food and Drug Administration. 23 February 2024. Retrieved 12 March 2024.
  4. Olivier T, Prasad V (April 2022). "The approval and withdrawal of melphalan flufenamide (melflufen): Implications for the state of the FDA". Translational Oncology. 18: 101374. doi:10.1016/j.tranon.2022.101374. PMC   8866737 . PMID   35196605.
  5. 1 2 3 4 "Pepaxti EPAR". European Medicines Agency (EMA). 21 June 2022. Retrieved 14 December 2022. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  6. 1 2 3 4 5 6 7 8 "FDA grants accelerated approval to melphalan flufenamide for relapsed or refractory multiple myeloma". U.S. Food and Drug Administration (FDA). 26 February 2021. Archived from the original on 1 March 2021. Retrieved 1 March 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  7. 1 2 3 "FDA Approves Oncopeptides' Pepaxto (melphalan flufenamide) for Patients with Triple-Class Refractory Multiple Myeloma" (Press release). Oncopeptides AB. 1 March 2021. Archived from the original on 1 March 2021. Retrieved 1 March 2021 via PR Newswire.
  8. 1 2 3 4 5 "Drug Trial Snapshot: Pepaxto". U.S. Food and Drug Administration (FDA). 13 December 2022. Retrieved 14 December 2022.
  9. "Drug Approval Package: Pepaxto". U.S. Food and Drug Administration (FDA). 22 March 2021. Archived from the original on 13 September 2021. Retrieved 12 September 2021.
  10. Gullbo J, Tullberg M, Våbenø J, Ehrsson H, Lewensohn R, Nygren P, et al. (2003). "Structure-activity relationship for alkylating dipeptide nitrogen mustard derivatives". Oncology Research. 14 (3): 113–132. doi:10.3727/000000003771013071. PMID   14760861.
  11. Wickström M, Lövborg H, Gullbo J (2006). "Future Prospects for Old Chemotherapeutic Drugs in the Target-Specific Era; Pharmaceutics, Combinations, Co-Drugs and Prodrugs with Melphalan as an Example". Letters in Drug Design & Discovery. 3 (10): 695–703. doi:10.2174/157018006778631893.
  12. 1 2 Gullbo J, Dhar S, Luthman K, Ehrsson H, Lewensohn R, Nygren P, et al. (September 2003). "Antitumor activity of the alkylating oligopeptides J1 (L-melphalanyl-p-L-fluorophenylalanine ethyl ester) and P2 (L-prolyl-m-L-sarcolysyl-p-L-fluorophenylalanine ethyl ester): comparison with melphalan". Anti-Cancer Drugs. 14 (8): 617–624. doi:10.1097/00001813-200309000-00006. PMID   14501383. S2CID   10282399.
  13. Wickström M, Johnsen JI, Ponthan F, Segerström L, Sveinbjörnsson B, Lindskog M, et al. (September 2007). "The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo". Molecular Cancer Therapeutics. 6 (9): 2409–2417. doi:10.1158/1535-7163.MCT-07-0156. PMID   17876040. S2CID   22694740.
  14. Gullbo J, Lindhagen E, Bashir-Hassan S, Tullberg M, Ehrsson H, Lewensohn R, et al. (November 2004). "Antitumor efficacy and acute toxicity of the novel dipeptide melphalanyl-p-L-fluorophenylalanine ethyl ester (J1) in vivo". Investigational New Drugs. 22 (4): 411–420. doi:10.1023/B:DRUG.0000036683.10945.bb. PMID   15292711. S2CID   31613292.
  15. Gullbo J, Wickström M, Tullberg M, Ehrsson H, Lewensohn R, Nygren P, et al. (July 2003). "Activity of hydrolytic enzymes in tumour cells is a determinant for anti-tumour efficacy of the melphalan containing prodrug J1". Journal of Drug Targeting. 11 (6): 355–363. doi:10.1080/10611860310001647140. PMID   14668056. S2CID   25203458.
  16. 1 2 3 Chauhan D, Ray A, Viktorsson K, Spira J, Paba-Prada C, Munshi N, et al. (June 2013). "In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells". Clinical Cancer Research. 19 (11): 3019–3031. doi:10.1158/1078-0432.CCR-12-3752. PMC   4098702 . PMID   23584492.
  17. 1 2 Viktorsson K, Shah CH, Juntti T, Hååg P, Zielinska-Chomej K, Sierakowiak A, et al. (May 2016). "Melphalan-flufenamide is cytotoxic and potentiates treatment with chemotherapy and the Src inhibitor dasatinib in urothelial carcinoma". Molecular Oncology. 10 (5): 719–734. doi:10.1016/j.molonc.2015.12.013. PMC   5423156 . PMID   26827254.
  18. Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M, et al. (July 2012). "Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy". Blood. 120 (2): 376–385. doi:10.1182/blood-2012-02-412783. PMC   3398763 . PMID   22451422.
  19. Wickström M, Viktorsson K, Lundholm L, Aesoy R, Nygren H, Sooman L, et al. (May 2010). "The alkylating prodrug J1 can be activated by aminopeptidase N, leading to a possible target directed release of melphalan". Biochemical Pharmacology. 79 (9): 1281–1290. doi:10.1016/j.bcp.2009.12.022. PMID   20067771.
  20. Wickström M, Larsson R, Nygren P, Gullbo J (March 2011). "Aminopeptidase N (CD13) as a target for cancer chemotherapy". Cancer Science. 102 (3): 501–508. doi:10.1111/j.1349-7006.2010.01826.x. PMC   7188354 . PMID   21205077.
  21. Wickström M, Haglund C, Lindman H, Nygren P, Larsson R, Gullbo J (June 2008). "The novel alkylating prodrug J1: diagnosis directed activity profile ex vivo and combination analyses in vitro". Investigational New Drugs. 26 (3): 195–204. doi:10.1007/s10637-007-9092-1. PMID   17922077. S2CID   19915448.
  22. "Paper: Efficacy of Melflufen, a Peptidase Targeted Therapy, and Dexamethasone in an Ongoing Open-Label Phase 2a Study in Patients with Relapsed and Relapsed-Refractory Multiple Myeloma (RRMM) Including an Initial Report on Progression Free Survival". Archived from the original on 6 March 2016. Retrieved 3 March 2016.
  23. Advancing Health Through Innovation: New Drug Therapy Approvals 2021 (PDF). U.S. Food and Drug Administration (FDA) (Report). 13 May 2022. Archived from the original on 6 December 2022. Retrieved 22 January 2023.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  24. "Oncopeptides withdraws Pepaxto in US, scale down organization and focus on R&D". Oncopeptides. 22 October 2021. Retrieved 19 June 2023.
  25. Schjesvold FH, Dimopoulos MA, Delimpasi S, Robak P, Coriu D, Legiec W, et al. (February 2022). "Melflufen or pomalidomide plus dexamethasone for patients with multiple myeloma refractory to lenalidomide (OCEAN): a randomised, head-to-head, open-label, phase 3 study". The Lancet. Haematology. 9 (2): e98–e110. doi: 10.1016/S2352-3026(21)00381-1 . PMID   35032434. S2CID   245950577.
  26. 1 2 "Pepaxti: Pending EC decision". European Medicines Agency. 23 June 2022. Archived from the original on 26 June 2022. Retrieved 26 June 2022. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  27. "Pepaxti Product information". Union Register of medicinal products. Retrieved 3 March 2023.
  28. World Health Organization (2012). "International nonproprietary names for pharmaceutical substances (INN): recommended INN: list 67". WHO Drug Information. 26 (1): 72. hdl: 10665/109416 .