Names | |
---|---|
Preferred IUPAC name 4-(4-{[2-(4-Chlorophenyl)-5,5-dimethylcyclohex-1-en-1-yl]methyl}piperazin-1-yl)-N-(4-{[(2R)-4-(morpholin-4-yl)-1-(phenylsulfanyl)butan-2-yl]amino}-3-(trifluoromethanesulfonyl)benzene-1-sulfonyl)benzamide | |
Other names ABT263; ABT-263 | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C47H55ClF3N5O6S3 | |
Molar mass | 974.61 g·mol−1 |
Pharmacology | |
L01XX78 ( WHO ) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Navitoclax (previously ABT-263) is an experimental orally active anti-cancer drug, which is a Bcl-2 inhibitor similar in action to obatoclax. [1] [2]
Navitoclax inhibits not only Bcl-2, but also Bcl-XL and Bcl-w proteins. [3] Because navitoclax inhibits Bcl-XL, it reduces platelet lifespan, causing thrombocytopenia, and this makes it dose-limiting.[ citation needed ]
In animal studies, navitoclax was found to be a senolytic agent, inducing apoptosis in senescent, but not non-senescent cells. [4] Oral administration of ABT263 to either sublethally irradiated or normally aged mice reduced senescent cells, including senescent bone marrow hematopoietic stem cells and senescent muscle stem cells. This depletion mitigated total-body irradiation-induced premature aging of the hematopoietic system and rejuvenated the aged hematopoietic stem cells and muscle stem cells in normally aged mice. [5]
On September 19, 2018, an article was published in Nature about using this drug to kill senescent glial cells in mice. The drug had a protective effect against memory loss in mice genetically engineered to simulate Alzheimer's Disease. [6]
In 2024, ABT-263 was tested as a topical application to the skin of aged (24 month) old mice in a 5 day experiment. [7]
ABT-263 was studied in 2009. [8] In January 2017, Navitoclax was evaluated as a combination treatment against solid tumors together with trametinib in a clinical trial sponsored by the National Cancer Institute. [9] In this phase Ib/II study, patients with RAS-mutant tumors were enrolled to received trametinib plus navitoclax in dose-escalation part followed by multiple dose expansion cohorts.
In ESMO Congress 2023, the final results of 91 patients (including 38 patients from dose escalation part) were reported. At RP2D, 8/49 (16.3%) evaluable patients had a partial response (PR) with disease control rate (DCR) 59.2%. Though 35.2% objective response rate (0RR) and a disease control rate (DCR) of 85.7% was achieved among the 32 patients with GYN cancers, but the median duration of response (DOR) of 8.2 months was only moderately fine and no complete response was achieved. [10]
The product is currently under development by AbbVie. Navitoclax as mono-therapy [11] [12] as well as in combination with chemotherapies (paclitaxel, docetaxel, gemcitabine, and irinotecan), olaparib, [13] erlotinib, [14] venetoclax, [15] and rituximab [16] in advanced hematological malignancies (in both pediatric and adult patients) and solid tumors including ovarian cancer, breast cancer, lung cancer.
In addition, a global multi-center, randomized, open-label, phase 3 study evaluating efficacy and safety of navitoclax in combination with ruxolitinib versus best available therapy in adult patients with relapsed/refractory myelofibrosis was initiated at 31 Aug, 2020 and is no longer recruiting (NCT04468984).
Not directly related to cancer, rather as a therapy for scleroderma, Navitoclax appeared to reduce existing fibrosis through inducing apoptosis of myofibroblasts. Further research is required to elucidate the exact mechanisms and confirm studies.
Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins. BCL2 blocks programmed cell death (apoptosis) while other BCL2 family members can either inhibit or induce it. It was the first apoptosis regulator identified in any organism.
Wortmannin, a steroid metabolite of the fungi Penicillium funiculosum, Talaromyces wortmannii, is a non-specific, covalent inhibitor of phosphoinositide 3-kinases (PI3Ks). It has an in vitro inhibitory concentration (IC50) of around 5 nM, making it a more potent inhibitor than LY294002, another commonly used PI3K inhibitor. It displays a similar potency in vitro for the class I, II, and III PI3K members although it can also inhibit other PI3K-related enzymes such as mTOR, DNA-PKcs, some phosphatidylinositol 4-kinases, myosin light chain kinase (MLCK) and mitogen-activated protein kinase (MAPK) at high concentrations Wortmannin has also been reported to inhibit members of the polo-like kinase family with IC50 in the same range as for PI3K. The half-life of wortmannin in tissue culture is about 10 minutes due to the presence of the highly reactive C20 carbon that is also responsible for its ability to covalently inactivate PI3K. Wortmannin is a commonly used cell biology reagent that has been used previously in research to inhibit DNA repair, receptor-mediated endocytosis and cell proliferation.
Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.
Cediranib is a potent inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases.
Mocetinostat (MGCD0103) is a benzamide histone deacetylase inhibitor undergoing clinical trials for treatment of various cancers including follicular lymphoma, Hodgkin's lymphoma and acute myelogenous leukemia.
Phosphoinositide 3-kinase inhibitors are a class of medical drugs that are mainly used to treat advanced cancers. They function by inhibiting one or more of the phosphoinositide 3-kinase (PI3K) enzymes, which are part of the PI3K/AKT/mTOR pathway. This signal pathway regulates cellular functions such as growth and survival. It is strictly regulated in healthy cells, but is always active in many cancer cells, allowing the cancer cells to better survive and multiply. PI3K inhibitors block the PI3K/AKT/mTOR pathway and thus slow down cancer growth. They are examples of a targeted therapy. While PI3K inhibitors are an effective treatment, they can have very severe side effects and are therefore only used if other treatments have failed or are not suitable.
A CDK inhibitor is any chemical that inhibits the function of CDKs. They are used to treat cancers by preventing overproliferation of cancer cells. The US FDA approved the first drug of this type, palbociclib (Ibrance), a CDK4/6 inhibitor, in February 2015, for use in postmenopausal women with breast cancer that is estrogen receptor positive and HER2 negative. While there are multiple cyclin/CDK complexes regulating the cell cycle, CDK inhibitors targeting CDK4/6 have been the most successful; four CDK4/6 inhibitors have been FDA approved. No inhibitors targeting other CDKs have been FDA approved, but several compounds are in clinical trials.
Crizotinib, sold under the brand name Xalkori among others, is an anti-cancer medication used for the treatment of non-small cell lung carcinoma (NSCLC). Crizotinib inhibits the c-Met/Hepatocyte growth factor receptor (HGFR) tyrosine kinase, which is involved in the oncogenesis of a number of other histological forms of malignant neoplasms. It also acts as an ALK and ROS1 inhibitor.
Dactolisib is an imidazoquinoline derivative acting as a PI3K inhibitor. It also inhibits mTOR. It is being investigated as a possible cancer treatment.
Gene expression profiling has revealed that diffuse large B-cell lymphoma (DLBCL) is composed of at least 3 different sub-groups, each having distinct oncogenic mechanisms that respond to therapies in different ways. Germinal Center B-Cell like (GCB) DLBCLs appear to arise from normal germinal center B cells, while Activated B-cell like (ABC) DLBCLs are thought to arise from postgerminal center B cells that are arrested during plasmacytic differentiation. The differences in gene expression between GCB DLBCL and ABC DLBCL are as vast as the differences between distinct types of leukemia, but these conditions have historically been grouped together and treated as the same disease.
Temozolomide, sold under the brand name Temodar among others, is an anticancer medication used to treat brain tumors such as glioblastoma and anaplastic astrocytoma. It is taken by mouth or via intravenous infusion.
Volasertib is an experimental small molecule inhibitor of the PLK1 protein being developed by Boehringer Ingelheim for use as an anti-cancer agent. Volasertib is the second in a novel class of drugs called dihydropteridinone derivatives.
Angiokinase inhibitors are a new therapeutic target for the management of cancer. They inhibit tumour angiogenesis, one of the key processes leading to invasion and metastasis of solid tumours, by targeting receptor tyrosine kinases. Examples include nintedanib, afatinib and motesanib.
Abexinostat is an experimental drug candidate for cancer treatment. It was developed by Pharmacyclics and licensed to Xynomic. As of 2013, it was in Phase II clinical trials for B-cell lymphoma. Pre-clinical study suggests the potential for treatment of different types of cancer as well.
BMS-906024 is a drug with a benzodiazepine structure, developed by Bristol-Myers Squibb and disclosed at the spring 2013 American Chemical Society meeting in New Orleans to treat breast, lung, colon cancers and leukemia. The drug works as a pan-Notch inhibitor. The structure is one of a set patented in 2012, and is being studied in clinical trials.
Dinaciclib (SCH-727965) is an experimental drug that inhibits cyclin-dependent kinases (CDKs). It is being evaluated in clinical trials for various cancer indications.
Resminostat is an orally bioavailable inhibitor of histone deacetylases (HDACs), of which inhibitors are antineoplastic agents.
GL-ONC1 is an investigational therapeutic product consisting of the clinical grade formulation of the laboratory strain GLV-1h68, an oncolytic virus developed by Genelux Corporation. GL-ONC1 is currently under evaluation in Phase I/II human clinical trials in the United States and Europe.
Abemaciclib, sold under the brand name Verzenio among others, is a medication for the treatment of advanced or metastatic breast cancers. It was developed by Eli Lilly and it acts as a CDK inhibitor selective for CDK4 and CDK6.
ABT-737 is a small molecule drug that inhibits Bcl-2 and Bcl-xL, two members of the Bcl-2 family of evolutionarily-conserved proteins that share Bcl-2 Homology (BH) domains. First developed as a potential cancer chemotherapy, it was subsequently identified as a senolytic.