Vorasidenib

Last updated
Voradisenib
Vorasidenib v2.svg
Clinical data
License data
Drug class Antineoplastic agent
Legal status
Legal status
  • Investigational
Identifiers
  • 6-(6-Chloropyridin-2-yl)-2-N,4-N-bis[(2R)-1,1,1-trifluoropropan-2-yl]-1,3,5-triazine-2,4-diamine
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
ChEMBL
Chemical and physical data
Formula C14H13ClF6N6
Molar mass 414.74 g·mol−1
3D model (JSmol)
  • C[C@H](C(F)(F)F)NC1=NC(=NC(=N1)C2=NC(=CC=C2)Cl)N[C@H](C)C(F)(F)F
  • InChI=1S/C14H13ClF6N6/c1-6(13(16,17)18)22-11-25-10(8-4-3-5-9(15)24-8)26-12(27-11)23-7(2)14(19,20)21/h3-7H,1-2H3,(H2,22,23,25,26,27)/t6-,7-/m1/s1
  • Key:QCZAWDGAVJMPTA-RNFRBKRXSA-N

Vorasidenib is an experimental anti-cancer medication for the treatment of low-grade glioma. It is a small molecule inhibitor of isocitrate dehydrogenase-1 (IDH1) and isocitrate dehydrogenase-2 (IDH2), which are mutated in several forms of cancer. [1] In a phase-III-trial, it was shown to prolong progression-free survival in patients with IDH1- or IDH2-mutant low-grade glioma. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Glioma</span> Tumour of the glial cells of the brain or spine

A glioma is a type of tumor that starts in the glial cells of the brain or the spine. Gliomas comprise about 30 percent of all brain tumors and central nervous system tumours, and 80 percent of all malignant brain tumours.

<span class="mw-page-title-main">Oligodendroglioma</span> Medical condition

Oligodendrogliomas are a type of glioma that are believed to originate from the oligodendrocytes of the brain or from a glial precursor cell. They occur primarily in adults but are also found in children.

<span class="mw-page-title-main">Glioblastoma</span> Aggressive type of brain cancer

Glioblastoma, previously known as glioblastoma multiforme (GBM), is the most aggressive and most common type of cancer that originates in the brain, and has very poor prognosis for survival. Initial signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality changes, nausea, and symptoms similar to those of a stroke. Symptoms often worsen rapidly and may progress to unconsciousness.

<span class="mw-page-title-main">Chondrosarcoma</span> Medical condition

Chondrosarcoma is a bone sarcoma, a primary cancer composed of cells derived from transformed cells that produce cartilage. A chondrosarcoma is a member of a category of tumors of bone and soft tissue known as sarcomas. About 30% of bone sarcomas are chondrosarcomas. It is resistant to chemotherapy and radiotherapy. Unlike other primary bone sarcomas that mainly affect children and adolescents, a chondrosarcoma can present at any age. It more often affects the axial skeleton than the appendicular skeleton.

<span class="mw-page-title-main">Isocitrate dehydrogenase</span> Class of enzymes

Isocitrate dehydrogenase (IDH) (EC 1.1.1.42) and (EC 1.1.1.41) is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome.

<span class="mw-page-title-main">Azacitidine</span> Chemical compound

Azacitidine, sold under the brand name Vidaza among others, is a medication used for the treatment of myelodysplastic syndrome, myeloid leukemia, and juvenile myelomonocytic leukemia. It is a chemical analog of cytidine, a nucleoside in DNA and RNA. Azacitidine and its deoxy derivative, decitabine were first synthesized in Czechoslovakia as potential chemotherapeutic agents for cancer.

<span class="mw-page-title-main">Tumor metabolome</span>

The study of the tumor metabolism, also known as tumor metabolome describes the different characteristic metabolic changes in tumor cells. The characteristic attributes of the tumor metabolome are high glycolytic enzyme activities, the expression of the pyruvate kinase isoenzyme type M2, increased channeling of glucose carbons into synthetic processes, such as nucleic acid, amino acid and phospholipid synthesis, a high rate of pyrimidine and purine de novo synthesis, a low ratio of Adenosine triphosphate and Guanosine triphosphate to Cytidine triphosphate and Uridine triphosphate, low Adenosine monophosphate levels, high glutaminolytic capacities, release of immunosuppressive substances and dependency on methionine.

<span class="mw-page-title-main">Ollier disease</span> Medical condition

Ollier disease is a rare sporadic nonhereditary skeletal disorder in which typically benign cartilaginous tumors (enchondromas) develop near the growth plate cartilage. This is caused by cartilage rests that grow and reside within the metaphysis or diaphysis and eventually mineralize over time to form multiple enchondromas. Key signs of the disorder include asymmetry and shortening of the limb as well as an increased thickness of the bone margin. These symptoms are typically first visible during early childhood with the mean age of diagnosis being 13 years of age. Many patients with Ollier disease are prone to develop other malignancies including bone sarcomas that necessitate treatment and the removal of malignant bone neoplasm. Cases in patients with Ollier disease has shown a link to IDH1, IDH2, and PTH1R gene mutations. Currently, there are no forms of treatment for the underlying condition of Ollier disease but complications such as fractures, deformities, malignancies that arise from it can be treated through surgical procedures. The prevalence of this condition is estimated at around 1 in 100,000. It is unclear whether the men or women are more affected by this disorder due to conflicting case studies.

In enzymology, a [isocitrate dehydrogenase (NADP+)] kinase (EC 2.7.11.5) is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">IDH3A</span> Protein-coding gene in the species Homo sapiens

Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial (IDH3α) is an enzyme that in humans is encoded by the IDH3A gene.

<span class="mw-page-title-main">IDH2</span>

Isocitrate dehydrogenase [NADP], mitochondrial is an enzyme that in humans is encoded by the IDH2 gene.

<span class="mw-page-title-main">IDH3G</span> Protein-coding gene in the species Homo sapiens

Isocitrate dehydrogenase [NAD] subunit gamma, mitochondrial is an enzyme that in humans is encoded by the IDH3G gene.

<span class="mw-page-title-main">IDH3B</span> Protein-coding gene in the species Homo sapiens

Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial is an enzyme that in humans is encoded by the IDH3B gene.

α-Hydroxyglutaric acid Chemical compound

α-Hydroxyglutaric acid is an alpha hydroxy acid form of glutaric acid.

<span class="mw-page-title-main">IDH1</span> Protein-coding gene in the species Homo sapiens

Isocitrate dehydrogenase 1 (NADP+), soluble is an enzyme that in humans is encoded by the IDH1 gene on chromosome 2. Isocitrate dehydrogenases catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. These enzymes belong to two distinct subclasses, one of which uses NAD+ as the electron acceptor and the other NADP+. Five isocitrate dehydrogenases have been reported: three NAD+-dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP+-dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP+-dependent isozyme is a homodimer. The protein encoded by this gene is the NADP+-dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2,4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production. Alternatively spliced transcript variants encoding the same protein have been found for this gene. [provided by RefSeq, Sep 2013]

<span class="mw-page-title-main">Enasidenib</span> Chemical compound

Enasidenib is a medication used to treat relapsed or refractory acute myeloid leukemia in people with specific mutations of the isocitrate dehydrogenase 2 (IDH2) gene, determined by an FDA-approved IDH2 companion diagnostic test. It is an inhibitor of IDH2. It was developed by Agios Pharmaceuticals and is licensed to Celgene for further development.

<span class="mw-page-title-main">Ivosidenib</span> Anti-cancer medication

Ivosidenib, sold under the brand name Tibsovo, is an anti-cancer medication for the treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. It is a small molecule inhibitor of isocitrate dehydrogenase-1 (IDH1), which is mutated in several forms of cancer. Ivosidenib is an isocitrate dehydrogenase-1 inhibitor that works by decreasing abnormal production of the oncometabolite 2-hydroxyglutarate (2-HG), leading to differentiation of malignant cells.

<span class="mw-page-title-main">Oncometabolism</span>

Oncometabolism is the field of study that focuses on the metabolic changes that occur in cells that make up the tumor microenvironment (TME) and accompany oncogenesis and tumor progression toward a neoplastic state.

<span class="mw-page-title-main">C2orf80</span> Gene

C2orf80 is a protein that in humans is encoded by the c2orf80 gene. The gene c2orf80 also goes by the alias GONDA1. In humans, c2orf80 is exclusively expressed in the brain. While relatively little is known about the function of c2orf80, medical studies have shown a strong association between variations in c2orf80 and IDH-mutant gliomas, 46,XY gonadal dysgenesis, and a possible association with blood pressure.

<span class="mw-page-title-main">Olutasidenib</span> Chemical compound

Olutasidenib, sold under the brand name Rezlidhia, is an anticancer medication used to treat relapsed or refractory acute myeloid leukemia. Olutasidenib is an isocitrate dehydrogenase-1 (IDH1) inhibitor. It is taken by mouth.

References

  1. "Vorasidenib compound summary". pubchem. 2 September 2023. Retrieved 6 September 2023.
  2. Mellinghoff, Ingo K.; et al. (2023-08-17), "Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma", New England Journal of Medicine, vol. 389, no. 7, pp. 389–601, doi:10.1056/NEJMoa2304194, PMC   5900343 , PMID   29670690