Cardiotoxicity

Last updated

Cardiotoxicity is the occurrence of heart dysfunction as electric or muscle damage, resulting in heart toxicity. [1] The heart becomes weaker and is not as efficient in pumping blood. Cardiotoxicity may be caused by chemotherapy (a usual example is the class of anthracyclines) [2] [3] treatment and/or radiotherapy; [4] complications from anorexia nervosa; adverse effects of heavy metals intake; [5] the long-term abuse of or ingestion at high doses of certain strong stimulants such as cocaine; [6] or an incorrectly administered drug such as bupivacaine. [7]

One of the ways to detect cardiotoxicity at early stages when there is a subclinical dysfunction is by measuring changes in regional function of the heart using strains.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Chemotherapy</span> Treatment of cancer using drugs that inhibit cell division or kill cells

Chemotherapy is a type of cancer treatment that uses one or more anti-cancer drugs as part of a standardized chemotherapy regimen. Chemotherapy may be given with a curative intent or it may aim to prolong life or to reduce symptoms. Chemotherapy is one of the major categories of the medical discipline specifically devoted to pharmacotherapy for cancer, which is called medical oncology.

The therapeutic index is a quantitative measurement of the relative safety of a drug. It is a comparison of the amount of a therapeutic agent that causes the therapeutic effect to the amount that causes toxicity. The related terms therapeutic window or safety window refer to a range of doses optimized between efficacy and toxicity, achieving the greatest therapeutic benefit without resulting in unacceptable side-effects or toxicity.

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O2H), superoxide (O2-), hydroxyl radical (OH.), and singlet oxygen. ROS are pervasive because they are readily produced from O2, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O2, which is central to fuel cells. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations.

<span class="mw-page-title-main">Idarubicin</span> Anthracycline antileukemic drug

Idarubicin or 4-demethoxydaunorubicin is an anthracycline antileukemic drug. It inserts itself into DNA and prevents DNA unwinding by interfering with the enzyme topoisomerase II. It is an analog of daunorubicin, but the absence of a methoxy group increases its fat solubility and cellular uptake. Similar to other anthracyclines, it also induces histone eviction from chromatin.

<span class="mw-page-title-main">Doxorubicin</span> Chemotherapy medication

Doxorubicin, sold under the brand name Adriamycin among others, is a chemotherapy medication used to treat cancer. This includes breast cancer, bladder cancer, Kaposi's sarcoma, lymphoma, and acute lymphocytic leukemia. It is often used together with other chemotherapy agents. Doxorubicin is given by injection into a vein.

<span class="mw-page-title-main">Anthracycline</span> Class of antibiotics

Anthracyclines are a class of drugs used in cancer chemotherapy that are extracted from Streptomyces bacterium. These compounds are used to treat many cancers, including leukemias, lymphomas, breast, stomach, uterine, ovarian, bladder cancer, and lung cancers. The first anthracycline discovered was daunorubicin, which is produced naturally by Streptomyces peucetius, a species of Actinomycetota. Clinically the most important anthracyclines are doxorubicin, daunorubicin, epirubicin and idarubicin.

<span class="mw-page-title-main">Epirubicin</span> Chemical compound

Epirubicin is an anthracycline drug used for chemotherapy. It can be used in combination with other medications to treat breast cancer in patients who have had surgery to remove the tumor. It is marketed by Pfizer under the trade name Ellence in the US and Pharmorubicin or Epirubicin Ebewe elsewhere.

<span class="mw-page-title-main">Cardiotoxin III</span>

Cardiotoxin III is a sixty amino-acid polypeptide toxin from the Taiwan Cobra Naja atra. CTX III is highly basic and hydrophobic protein. It is an example of a group of snake cardio/cytotoxins, which are made up of shorter snake venom three-finger toxins. Over 50 different cytotoxin polypeptides have been isolated and sequenced from venom samples. The difference in the CTX functionality may be due to the relatively small difference in the polypeptide's structure, allowing different CTXs to induce lysis in different cell types. The CTX III molecule contains multiple binding sites and is cytolytic for myocardial cells and human leukemic T cells.

<span class="mw-page-title-main">Bafilomycin</span> Chemical compound

The bafilomycins are a family of macrolide antibiotics produced from a variety of Streptomycetes. Their chemical structure is defined by a 16-membered lactone ring scaffold. Bafilomycins exhibit a wide range of biological activity, including anti-tumor, anti-parasitic, immunosuppressant and anti-fungal activity. The most used bafilomycin is bafilomycin A1, a potent inhibitor of cellular autophagy. Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death.

<span class="mw-page-title-main">Dexrazoxane</span> Chemical compound

Dexrazoxane hydrochloride is a cardioprotective agent. It was discovered by Eugene Herman in 1972. The IV administration of dexrazoxane is in acidic condition with HCl adjusting the pH.

Topoisomerase inhibitors are chemical compounds that block the action of topoisomerases, which are broken into two broad subtypes: type I topoisomerases (TopI) and type II topoisomerases (TopII). Topoisomerase plays important roles in cellular reproduction and DNA organization, as they mediate the cleavage of single and double stranded DNA to relax supercoils, untangle catenanes, and condense chromosomes in eukaryotic cells. Topoisomerase inhibitors influence these essential cellular processes. Some topoisomerase inhibitors prevent topoisomerases from performing DNA strand breaks while others, deemed topoisomerase poisons, associate with topoisomerase-DNA complexes and prevent the re-ligation step of the topoisomerase mechanism. These topoisomerase-DNA-inhibitor complexes are cytotoxic agents, as the un-repaired single- and double stranded DNA breaks they cause can lead to apoptosis and cell death. Because of this ability to induce apoptosis, topoisomerase inhibitors have gained interest as therapeutics against infectious and cancerous cells.

<span class="mw-page-title-main">Pixantrone</span> Chemical compound

Pixantrone is an experimental antineoplastic (anti-cancer) drug, an analogue of mitoxantrone with fewer toxic effects on cardiac tissue. It acts as a topoisomerase II poison and intercalating agent. The code name BBR 2778 refers to pixantrone dimaleate, the actual substance commonly used in clinical trials.

<span class="mw-page-title-main">Cocaine intoxication</span> Medical condition

Cocaine intoxication refers to the subjective, desired and adverse effects of cocaine on the mind and behavior of users. Both self-induced and involuntary cocaine intoxication have medical and legal implications.

<span class="mw-page-title-main">25E-NBOMe</span> Chemical compound

25E-NBOMe is a derivative of the phenethylamine 2C-E. It acts in a similar manner to related compounds such as 25I-NBOMe, which are potent agonists at the 5-HT2A receptor. 25E-NBOMe has been sold as a drug and produces similar effects in humans to related compounds such as 25I-NBOMe and 25C-NBOMe.

<span class="mw-page-title-main">25H-NBOMe</span> Chemical compound

25H-NBOMe (NBOMe-2C-H) is a derivative of the phenethylamine hallucinogen 2C-H, which acts as a highly potent full agonist for the human 5-HT2A receptor.

<span class="mw-page-title-main">25iP-NBOMe</span> Chemical compound

25iP-NBOMe is a derivative of the phenethylamine hallucinogen 2C-iP, which acts as a highly potent agonist for the human 5-HT2A receptor.

<span class="mw-page-title-main">Opioid withdrawal</span> Withdrawal symptoms of opiates

Opioid withdrawal is a set of symptoms arising from the sudden withdrawal or reduction of opioids where previous usage has been heavy and prolonged. Signs and symptoms of withdrawal can include drug craving, anxiety, restless legs, nausea, vomiting, diarrhea, sweating, and an increased heart rate. Opioid use triggers a rapid adaptation in cellular signalling pathways that means, when rapidly withdrawn, there can be adverse physiological effects. All opioids, both recreational drugs and medications, when reduced or stopped, can lead to opioid withdrawal symptoms. When withdrawal symptoms are due to recreational opioid use, the term opioid use disorder is used, whereas when due to prescribed medications, the term prescription opioid use disorder is used. Opioid withdrawal can be helped by the use of opioid replacement therapy, and symptoms may be relieved by the use of medications including lofexidine and clonidine.

<span class="mw-page-title-main">Bisantrene</span> Chemical compound

Bisantrene, trademarked as Zantrène, is an anthracenyl bishydrazone with anthracycline-like antineoplastic activity and an antimetabolite. Bisantrene intercalates with and disrupts the configuration of DNA, resulting in DNA single-strand breaks, DNA-protein crosslinking, and inhibition of DNA replication. This agent is similar to doxorubicin in activity, but unlike anthracyclines like doxorubicin, exhibits little cardiotoxicity.

<span class="mw-page-title-main">Bell's mania</span> Medical condition

Bell's mania, also known as delirious mania, refers to an acute neurobehavioral syndrome. This is usually characterized by an expeditious onset of delirium, mania, psychosis, followed by grandiosity, emotional lability, altered consciousness, hyperthermia, and in extreme cases, death. It is sometimes misdiagnosed as excited delirium (EXD) or catatonia due to the presence of overlapping symptoms. Pathophysiology studies reveal elevated dopamine levels in the neural circuit as the underlying mechanism. Psychostimulant users as well as individuals experiencing severe manic episodes are more prone to the manifestation of this condition. Management solutions such as sedation and ketamine injections have been discussed for medical professionals and individuals with the condition. Bell's mania cases are commonly reported in countries like the United States and Canada and are commonly associated with psychostimulant use and abuse.

<span class="mw-page-title-main">Pharmacological cardiotoxicity</span>

Pharmacological cardiotoxicity is a cardiac damage under the action of drugs and it can occur both affecting the performances of the cardiac muscle and by altering the ion channels/currents of the functional cardiac cells, named the cardiomyocytes.

References

  1. Sishi, Balindiwe J. N. (2015-01-01), Hayat, M. A. (ed.), "Chapter 10 - Autophagy Upregulation Reduces Doxorubicin-Induced Cardiotoxicity", Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, Amsterdam: Academic Press, pp. 157–173, doi:10.1016/b978-0-12-801033-4.00010-2, ISBN   978-0-12-801033-4 , retrieved 2022-07-06
  2. Huang, C.; Zhang, X.; Ramil, J. M.; Rikka, S.; Kim, L.; Lee, Y.; Gude, N. A.; Thistlethwaite, P. A.; Sussman, M. A. (2010). "Juvenile Exposure to Anthracyclines Impairs Cardiac Progenitor Cell Function and Vascularization Resulting in Greater Susceptibility to Stress-Induced Myocardial Injury in Adult Mice. Cardiotoxins are the second most toxic venom while neurotoxins are the first". Circulation. 121 (5): 675–83. doi:10.1161/CIRCULATIONAHA.109.902221. PMC   2834271 . PMID   20100968.
  3. Volkova M, Russell R (2011). "Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment". Curr Cardiol Rev. 7 (4): 214–220. doi:10.2174/157340311799960645. PMC   3322439 . PMID   22758622.
  4. Suchorska, Wiktoria M. (2020-01-01). "Radiobiological models in prediction of radiation cardiotoxicity". Reports of Practical Oncology & Radiotherapy. 25 (1): 46–49. doi:10.1016/j.rpor.2019.12.001. ISSN   1507-1367. PMC   6931197 . PMID   31889920.
  5. Nigra, Anne E; Ruiz-Hernandez, Adrian; Redon, Josep; Navas-Acien, Ana; Tellez-Plaza, Maria (2016). "Environmental Metals and Cardiovascular Disease in Adults: A Systematic Review beyond Lead and Cadmium". Current Environmental Health Reports. 3 (4): 416–433. doi:10.1007/s40572-016-0117-9. ISSN   2196-5412. PMC   5801549 . PMID   27783356.
  6. Pergolizzi, Joseph V; Magnusson, Peter; LeQuang, Jo Ann K; Breve, Frank; Varrassi, Giustino (2021). "Cocaine and Cardiotoxicity: A Literature Review". Cureus. 13 (4): e14594. doi: 10.7759/cureus.14594 . ISSN   2168-8184. PMC   8136464 . PMID   34036012.
  7. de La Coussaye JE, Eledjam JJ, Brugada J, Sassine A (1993). "[Cardiotoxicity of local anesthetics]". Cahiers d'Anesthésiologie. 41 (6): 589–598. PMID   8287299.