Cinobufagin

Last updated
Cinobufagin
Cinobufagin.png
Names
IUPAC name
3β-Hydroxy-14,15β-epoxy-5β-bufa-20,22-dienolid-16β-yl acetate
Systematic IUPAC name
(1R,2R,2aR,3aS,3bR,5aR,7S,9aS,9bS,11aR)-7-Hydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1′,2′:6,7]indeno[1,7a-b]oxiran-2-yl acetate
Other names
Cinobufagin
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.164.680 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 636-927-8
KEGG
PubChem CID
UNII
  • InChI=1S/C26H34O6/c1-14(27)31-22-21(15-4-7-20(29)30-13-15)25(3)11-9-18-19(26(25)23(22)32-26)6-5-16-12-17(28)8-10-24(16,18)2/h4,7,13,16-19,21-23,28H,5-6,8-12H2,1-3H3/t16-,17+,18+,19-,21+,22-,23-,24+,25-,26-/m1/s1 X mark.svgN
    Key: SCULJPGYOQQXTK-OLRINKBESA-N X mark.svgN
  • InChI=1/C26H34O6/c1-14(27)31-22-21(15-4-7-20(29)30-13-15)25(3)11-9-18-19(26(25)23(22)32-26)6-5-16-12-17(28)8-10-24(16,18)2/h4,7,13,16-19,21-23,28H,5-6,8-12H2,1-3H3/t16-,17+,18+,19-,21+,22-,23-,24+,25-,26-/m1/s1
    Key: SCULJPGYOQQXTK-OLRINKBEBZ
  • O=C\1O\C=C(/C=C/1)[C@@H]4[C@@]6(C)CC[C@H]3[C@@H](CC[C@@H]2C[C@@H](O)CC[C@@]23C)[C@]65O[C@@H]5[C@@H]4OC(=O)C
Properties
C26H34O6
Molar mass 442.552 g·mol−1
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS-pictogram-skull.svg
Danger
H300, H310, H330
P260, P262, P264, P270, P271, P280, P284, P301+P310, P302+P350, P304+P340, P310, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Cinobufagin is a cardiotoxic bufanolide steroid secreted by the Asiatic toad Bufo gargarizans . It has similar effects to digitalis and is used in traditional Chinese medicine. [1]

Contents

Isolation and purification

Cinobufagin, as well as other bufadienolides, can be isolated from the traditional Chinese medicine called ChanSu. ChanSu is made from a multitude of chemicals present in Bufo gargarizans secretions. Resibufogenin can be eluted out with silica gel column chromatography, using a 5:1 ratio of cyclohexane to acetone for the solvent in the mobile phase. Subsequently, cinobufagin and bufalin can be separated and purified using an HPLC column with a 72:28 methanol to water solvent. Yang et al. confirmed this method of isolation for cinobufagin with Proton NMR. [2]

Clinical significance

Cinobufagin has been shown to have clinical applications in cancer treatment as well as immunomodulatory and analgesic properties.[ citation needed ]

In human adrenocortical cells, cinobufagin inhibits the secretion of aldosterone and cortisol. Cinobufagin is able to inhibit the expression of the StAR protein as well as bind the transcription factor SF-1, which normally binds to the promoter for the StAR gene. This results in less StAR protein product and decreased levels of aldosterone and cortisol synthesis. Cinobufagin first binds to a Ca2+/K+ plasma membrane ATPase, subsequently inducing the phosphorylation of extracellular signal-regulated kinases (ERK). Phosphorylated ERK then blocks the SF-1 transcription factor from binding to the promoter region of the StAR gene.

Thus, cinobufagin plays important roles in regulation of steroid synthesis and gene expression. It is speculated that cinobufagin may have therapeutic roles in treatment of Cushing's syndrome and heart failure. [3]

Immunology

In vitro, cinobufagin can stimulate the proliferation of immune cells including splenocytes, peritoneal macrophages, T helper cells and cytotoxic T cells. Additionally cinobufagin can modulate levels of cytokines produced by immune cells. Exposure to cinobufagin increases levels of interferon gamma and tumor necrosis factor alpha while decreasing overall levels of interleukin 4 and interleukin 10. [4]

Analgesic properties

Cinobufagin has been shown to increase pain threshold levels in mice to thermal and mechanical stimuli. It is thought to trigger increased synthesis of β-END and the up-regulation of the mu opioid receptor in mouse tumor tissue thereby leading to pain relief. β-END binds the mu opioid receptor to cause the analgesic effect. [5]

C. elegans can catabolize cinobufagin into five distinct metabolites, each of which has been shown to have cytotoxic effects to HeLa cancer cells. [6]

Cinobufagin can induce cell cycle arrest at the G2 and M phases as well as induce apoptosis in osteosarcoma cells. Potentially, cinobufagin could be used to stop proliferation of osteosarcoma cells as well as to induce apoptosis them. At the protein level, cinobufagin treated osteosarcoma cells showed an increase in the Bax and cleaved-PARP apoptotic proteins, while inhibiting the GSK-3β/NF-κB signaling pathway. [7]

With regards to the induction of apoptosis, cinobufagin has been shown to selectively bind K+/Na+ ATPases in canine kidney cells to trigger a signaling cascade which leads to caspase dependent pathways for apoptosis. It is through the activation of caspases that Cinobufagin can cause apoptosis. [8]

Related Research Articles

<span class="mw-page-title-main">Adrenocorticotropic hormone</span> Pituitary hormone

Adrenocorticotropic hormone is a polypeptide tropic hormone produced by and secreted by the anterior pituitary gland. It is also used as a medication and diagnostic agent. ACTH is an important component of the hypothalamic-pituitary-adrenal axis and is often produced in response to biological stress. Its principal effects are increased production and release of cortisol and androgens by the cortex and medulla of the adrenal gland, respectively. ACTH is also related to the circadian rhythm in many organisms.

<span class="mw-page-title-main">Adrenal cortex</span> Cortex of the adrenal gland

The adrenal cortex is the outer region and also the largest part of the adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones. It is also a secondary site of androgen synthesis.

Corticotropes are basophilic cells in the anterior pituitary that produce pro-opiomelanocortin (POMC) which undergoes cleavage to adrenocorticotropin (ACTH), β-lipotropin (β-LPH), and melanocyte-stimulating hormone (MSH). These cells are stimulated by corticotropin releasing hormone (CRH) and make up 15–20% of the cells in the anterior pituitary. The release of ACTH from the corticotropic cells is controlled by CRH, which is formed in the cell bodies of parvocellular neurosecretory cells within the paraventricular nucleus of the hypothalamus and passes to the corticotropes in the anterior pituitary via the hypophyseal portal system. Adrenocorticotropin hormone stimulates the adrenal cortex to release glucocorticoids and plays an important role in the stress response.

Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen and 3-ketosteroids. In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as cell surface receptors for certain steroid hormones.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

Bufagin is a toxic steroid C24H34O5 obtained from toad's milk, the poisonous secretion of a skin gland on the back of the neck of a large toad (Rhinella marina, synonym Bufo marinus, the cane toad). The toad produces this secretion when it is injured, scared or provoked. Bufagin resembles chemical substances from digitalis in physiological activity and chemical structure.

<span class="mw-page-title-main">Bufotalin</span> Chemical compound

Bufotalin is a cardiotoxic bufanolide steroid, cardiac glycoside analogue, secreted by a number of toad species. Bufotalin can be extracted from the skin parotoid glands of several types of toad.

<span class="mw-page-title-main">Enoxolone</span> Chemical compound

Enoxolone is a pentacyclic triterpenoid derivative of the beta-amyrin type obtained from the hydrolysis of glycyrrhizic acid, which was obtained from the herb liquorice.

<span class="mw-page-title-main">Transforming growth factor beta</span> Cytokine

Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms and many other signaling proteins. TGFB proteins are produced by all white blood cell lineages.

In humans and other animals, the adrenocortical hormones are hormones produced by the adrenal cortex, the outer region of the adrenal gland. These polycyclic steroid hormones have a variety of roles that are crucial for the body’s response to stress, and they also regulate other functions in the body. Threats to homeostasis, such as injury, chemical imbalances, infection, or psychological stress, can initiate a stress response. Examples of adrenocortical hormones that are involved in the stress response are aldosterone and cortisol. These hormones also function in regulating the conservation of water by the kidneys and glucose metabolism, respectively.

<span class="mw-page-title-main">GDF2</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 2 (GDF2) also known as bone morphogenetic protein (BMP)-9 is a protein that in humans is encoded by the GDF2 gene. GDF2 belongs to the transforming growth factor beta superfamily.

<span class="mw-page-title-main">CD27</span> Member of the tumor necrosis factor receptor superfamily.

CD27 is a member of the tumor necrosis factor receptor superfamily. It is currently of interest to immunologists as a co-stimulatory immune checkpoint molecule, and is the target of an anti-cancer drug in clinical trials.

<span class="mw-page-title-main">SHC1</span> Protein-coding gene in humans

SHC-transforming protein 1 is a protein that in humans is encoded by the SHC1 gene. SHC has been found to be important in the regulation of apoptosis and drug resistance in mammalian cells.

<span class="mw-page-title-main">Peptidylprolyl isomerase A</span> Protein-coding gene in the species Homo sapiens

Peptidylprolyl isomerase A (PPIA), also known as cyclophilin A (CypA) or rotamase A is an enzyme that in humans is encoded by the PPIA gene on chromosome 7. As a member of the peptidyl-prolyl cis-trans isomerase (PPIase) family, this protein catalyzes the cis-trans isomerization of proline imidic peptide bonds, which allows it to regulate many biological processes, including intracellular signaling, transcription, inflammation, and apoptosis. Due to its various functions, PPIA has been implicated in a broad range of inflammatory diseases, including atherosclerosis and arthritis, and viral infections.

Fasudil (INN) is a potent Rho-kinase inhibitor and vasodilator. Since it was discovered, it has been used for the treatment of cerebral vasospasm, which is often due to subarachnoid hemorrhage, as well as to improve the cognitive decline seen in stroke patients. It has been found to be effective for the treatment of pulmonary hypertension. It has been demonstrated that fasudil could improve memory in normal mice, identifying the drug as a possible treatment for age-related or neurodegenerative memory loss.

<span class="mw-page-title-main">Arenobufagin</span> Chemical compound

Arenobufagin is a cardiotoxic bufanolide steroid secreted by the Argentine toad Bufo arenarum. It has effects similar to digitalis, blocking the Na+/K+ pump in heart tissue.

<span class="mw-page-title-main">Chrysophanol</span> Chemical compound

Chrysophanol, also known as chrysophanic acid, is a fungal isolate and a natural anthraquinone. It is a C-3 methyl substituted chrysazin of the trihydroxyanthraquinone family.

N2a cells are a fast-growing mouse neuroblastoma cell line.

Membrane progesterone receptors (mPRs) are a group of cell surface receptors and membrane steroid receptors belonging to the progestin and adipoQ receptor (PAQR) family which bind the endogenous progestogen and neurosteroid progesterone, as well as the neurosteroid allopregnanolone. Unlike the progesterone receptor (PR), a nuclear receptor which mediates its effects via genomic mechanisms, mPRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The mPRs mediate important physiological functions in male and female reproductive tracts, liver, neuroendocrine tissues, and the immune system as well as in breast and ovarian cancer.

<span class="mw-page-title-main">Zinc transporter ZIP9</span> Protein found in humans

Zinc transporter ZIP9, also known as Zrt- and Irt-like protein 9 (ZIP9) and solute carrier family 39 member 9, is a protein that in humans is encoded by the SLC39A9 gene. This protein is the 9th member out of 14 ZIP family proteins, which is a membrane androgen receptor (mAR) coupled to G proteins, and also classified as a zinc transporter protein. ZIP family proteins transport zinc metal from the extracellular environment into cells through cell membrane.

References

  1. Yang, Z.; Luo, H.; Wang, H.; Hou H. (2008). "Preparative Isolation of Bufalin and Cinobufagin from Chinese Traditional Medicine ChanSu" (PDF). Journal of Chromatographic Science. 46 (1): 81–85. doi: 10.1093/chromsci/46.1.81 . PMID   18218193.
  2. Yang, Z.; Luo, H.; Wang, H.; Hou H. (2008). "Preparative Isolation of Bufalin and Cinobufagin from Chinese Traditional Medicine ChanSu" (PDF). Journal of Chromatographic Science. 46 (1): 81–85. doi: 10.1093/chromsci/46.1.81 . PMID   18218193.
  3. Mei-Mei, Kau; Jiing-Rong Wang; Shiow-Chwen Tsai; Ching-Han Yu; Paulus S Wang (2012). "Inhibitory effect of bufalin and cinobufagin on steroidogenesis via the activation of ERK in human adrenocortical cells". British Journal of Pharmacology. 165 (6): 1868–1876. doi:10.1111/j.1476-5381.2011.01671.x. PMC   3372836 . PMID   21913902.
  4. Wang XL, Zhao GH, Zhang J, Shi QY, Guo WX, Tian XL, Qiu JZ, Yin LZ, Deng XM, Song Y (2011). "Immunomodulatory effects of cinobufagin isolated from Chan Su on activation and cytokines secretion of immunocyte in vitro". J Asian Nat Prod Res. 13 (5): 383–92. doi:10.1080/10286020.2011.565746. PMID   21534035. S2CID   205679985.
  5. Tao Chen; Wei Hu; Zhang J; Haibo He; Zipeng Gong; Jing Wang; Xueqin Yu; Ting Ai; Ling Zhan (2013). "A Study on the Mechanism of Cinobufagin in the Treatment of Paw Cancer Pain by Modulating Local β-Endorphin Expression In Vivo". Evidence-Based Complementary and Alternative Medicine. 2013: 1–9. doi: 10.1155/2013/851256 . PMC   3800629 . PMID   24187573.
  6. Li Qiao; Yu-zhi Zhou; Zhang J; Xiu-lan Qi; Li-hong Lin; Huan Chen; Li-yan Pang; Yue-hu Pei (2007). "Biotransformation of Cinobufagin by Cunninghamella elegans" (PDF). The Journal of Antibiotics. 60 (4): 261–264. doi: 10.1038/ja.2007.32 . PMID   17456977.
  7. Yin JQ, Wen L, Wu LC, Gao ZH, Huang G, Wang J, Zou CY, Tan PX, Yong BC, Jia Q, Shen JN (2013). "The glycogen synthase kinase-3β/nuclear factor-kappa B pathway is involved in cinobufagin-induced apoptosis in cultured osteosarcoma cells". Toxicology Letters. 218 (2): 129–36. doi:10.1016/j.toxlet.2012.11.006. PMID   23164673.
  8. Akimova OA; Bagrov AY; Lopina OD; Kamernitsky AV; Tremblay J; Hamet P; Orlov SN (2005). "Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells". The Journal of Biological Chemistry. 280 (1): 832–839. doi: 10.1074/jbc.M411011200 . PMID   15494417.