Heart failure

Last updated

Heart failure
Other namesCongestive heart failure (CHF), congestive cardiac failure (CCF) [1] [2]
Elevated JVP.JPG
A man with congestive heart failure and marked jugular venous distension. External jugular vein marked by an arrow.
Specialty Cardiology
Symptoms Shortness of breath, exhaustion, swollen legs [3]
Complications Cardiac arrest
DurationLifetime
Causes Heart attack, high blood pressure, abnormal heart rhythm, excessive alcohol use, infection, heart damage [4]
Risk factors Smoking, sedentary lifestyle, obesity, exposure to second-hand smoke [5]
Diagnostic method Echocardiogram [6]
Differential diagnosis Kidney failure, thyroid disease, liver disease, anemia, obesity [7]
Medication Diuretics, cardiac medications [4] [6]
Frequency40 million (2015), [8] 1–2% of adults (developed countries) [6] [9]
Deaths35% risk of death in the first year [10]

Heart failure (HF), also known as congestive heart failure (CHF), is a syndrome caused by an impairment in the heart's ability to fill with and pump blood.

Contents

Although symptoms vary based on which side of the heart is affected, HF typically presents with shortness of breath, excessive fatigue, and bilateral leg swelling. [3] The severity of the heart failure is mainly decided based on ejection fraction and also measured by the severity of symptoms. [7] Other conditions that have symptoms similar to heart failure include obesity, kidney failure, liver disease, anemia, and thyroid disease. [7]

Common causes of heart failure include coronary artery disease, heart attack, high blood pressure, atrial fibrillation, valvular heart disease, excessive alcohol consumption, infection, and cardiomyopathy. [4] [6] These cause heart failure by altering the structure or the function of the heart or in some cases both. [6] There are different types of heart failure: right-sided heart failure, which affects the right heart, left-sided heart failure, which affects the left heart, and biventricular heart failure, which affects both sides of the heart. [11] Left-sided heart failure may be present with a reduced ejection fraction or with a preserved ejection fraction. [10] Heart failure is not the same as cardiac arrest, in which blood flow stops completely due to the failure of the heart to pump. [12] [13]

Diagnosis is based on symptoms, physical findings, and echocardiography. [6] Blood tests, and a chest x-ray may be useful to determine the underlying cause. [14] Treatment depends on severity and case. [15] For people with chronic, stable, or mild heart failure, treatment usually consists of lifestyle changes, such as not smoking, physical exercise, and dietary changes, as well as medications. [16] [17] [18] In heart failure due to left ventricular dysfunction, angiotensin-converting-enzyme inhibitors, angiotensin II receptor blockers (ARBs), or angiotensin receptor-neprilysin inhibitors, along with beta blockers, mineralocorticoid receptor antagonists and SGLT2 inhibitors are recommended. [6] Diuretics may also be prescribed to prevent fluid retention and the resulting shortness of breath. [19] Depending on the case, an implanted device such as a pacemaker or implantable cardiac defibrillator may sometimes be recommended. [15] In some moderate or more severe cases, cardiac resynchronization therapy (CRT) [20] or cardiac contractility modulation may be beneficial. [21] In severe disease that persists despite all other measures, a cardiac assist device ventricular assist device, or, occasionally, heart transplantation may be recommended. [19]

Heart failure is a common, costly, and potentially fatal condition, [22] and is the leading cause of hospitalization and readmission in older adults. [23] [24] Heart failure often leads to more drastic health impairments than the failure of other, similarly complex organs such as the kidneys or liver. [25] In 2015, it affected about 40 million people worldwide. [8] Overall, heart failure affects about 2% of adults, [22] and more than 10% of those over the age of 70. [6] Rates are predicted to increase. [22]

The risk of death in the first year after diagnosis is about 35%, while the risk of death in the second year is less than 10% in those still alive. [10] The risk of death is comparable to that of some cancers. [10] In the United Kingdom, the disease is the reason for 5% of emergency hospital admissions. [10] Heart failure has been known since ancient times in Egypt; it is mentioned in the Ebers Papyrus around 1550 BCE. [26]

Definition

When the heart functions poorly as a pump and does not circulate blood adequately via the circulatory system to meet the demands of the body the term cardiovascular insufficiency is sometimes used. This generally leads to the syndrome of heart failure, a combination of signs and symptoms [6] :3612 [3] It develops when the heart fails to properly fill with blood during diastole, resulting in a decrease in intracardiac pressures or in ejection during systole, reducing cardiac output to the rest of the body. [6] :3612 [4] :e272 The filling failure and high intracardiac pressure can lead to fluid accumulation in ventricles of the heart. This manifests as water retention and swelling due to fluid accumulation (edema) called congestion. Impaired ejection can lead to inadequate blood flow to the body tissues, resulting in ischemia. [27] [28]

Signs and symptoms

Signs and symptoms of severe heart failure Heartfailure.jpg
Signs and symptoms of severe heart failure

Congestive heart failure is a pathophysiological condition in which the heart's output is insufficient to meet the needs of the body and lungs. [10] The term "congestive heart failure" is often used because one of the most common symptoms is congestion or fluid accumulation in the tissues and veins of the lungs or other parts of a person's body. [10]

Congestion manifests itself particularly in the form of fluid accumulation and swelling (edema), in the form of peripheral edema (causing swollen limbs and feet) and pulmonary edema (causing difficulty breathing) and ascites (swollen abdomen). [28] Pulse pressure, which is the difference between the systolic ("top number") and diastolic ("bottom number") blood pressures, is often low/narrow (i.e. 25% or less of the level of the systolic) in people with heart failure, and this can be an early warning sign. [29]

Symptoms of heart failure are traditionally divided into left-sided and right-sided because the left and right ventricles supply different parts of the circulation. In biventricular heart failure, both sides of the heart are affected. Left-sided heart failure is the more common. [30]

Left-sided failure

The left side of the heart takes oxygen-rich blood from the lungs and pumps it to the rest of the circulatory system in the body (except for the pulmonary circulation). Failure of the left side of the heart causes blood to back up into the lungs, causing breathing difficulties and fatigue due to an insufficient supply of oxygenated blood. Common respiratory signs include increased respiratory rate and labored breathing (nonspecific signs of shortness of breath). Rales or crackles are heard initially in the lung bases and when severe in all lung fields indicate the development of pulmonary edema (fluid in the alveoli). Cyanosis, indicates deficiency of oxygen in the blood, is a late sign of extremely severe pulmonary edema. [31]

Other signs of left ventricular failure include a laterally displaced apex beat (which occurs when the heart is enlarged) and a gallop rhythm (additional heart sounds), which may be heard as a sign of increased blood flow or increased intracardiac pressure. Heart murmurs may indicate the presence of valvular heart disease, either as a cause (e.g., aortic stenosis) or as a consequence (e.g., mitral regurgitation) of heart failure. [32]

Reverse insufficiency of the left ventricle causes congestion in the blood vessels of the lungs so that symptoms are predominantly respiratory. Reverse insufficiency can be divided into the failure of the left atrium, the left ventricle, or both within the left circuit. Patients will experience shortness of breath (dyspnea) on exertion and, in severe cases, dyspnea at rest. Increasing breathlessness while lying down, called orthopnea, also occurs. It can be measured by the number of pillows required to lie comfortably, with extreme cases of orthopnea forcing the patient to sleep sitting up. Another symptom of heart failure is paroxysmal nocturnal dyspnea: a sudden nocturnal attack of severe shortness of breath, usually occurring several hours after falling asleep. [33] There may be "cardiac asthma" or wheezing. Impaired left ventricular forward function can lead to symptoms of poor systemic perfusion such as dizziness, confusion, and cool extremities at rest. Loss of consciousness may also occur due to loss of blood supply to the brain. [34]

Right-sided failure

Severe peripheral pitting edema Combinpedal.jpg
Severe peripheral pitting edema

Right-sided heart failure is often caused by pulmonary heart disease (cor pulmonale), which is typically caused by issues with pulmonary circulation such as pulmonary hypertension or pulmonic stenosis. Physical examination may reveal pitting peripheral edema, ascites, liver enlargement, and spleen enlargement. Jugular venous pressure is frequently assessed as a marker of fluid status, which can be accentuated by testing hepatojugular reflux. If the right ventricular pressure is increased, a parasternal heave which causes the compensatory increase in contraction strength may be present. [35]

Backward failure of the right ventricle leads to congestion of systemic capillaries. This generates excess fluid accumulation in the body. This causes swelling under the skin (peripheral edema or anasarca) and usually affects the dependent parts of the body first, causing foot and ankle swelling in people who are standing up and sacral edema in people who are predominantly lying down. Nocturia (frequent night-time urination) may occur when fluid from the legs is returned to the bloodstream while lying down at night. In progressively severe cases, ascites (fluid accumulation in the abdominal cavity causing swelling) and liver enlargement may develop. Significant liver congestion may result in impaired liver function (congestive hepatopathy), jaundice, and coagulopathy (problems of decreased or increased blood clotting). [36]

Biventricular failure

Dullness of the lung fields when percussed and reduced breath sounds at the base of the lungs may suggest the development of a pleural effusion (fluid collection between the lung and the chest wall). Though it can occur in isolated left- or right-sided heart failure, it is more common in biventricular failure because pleural veins drain into both the systemic and pulmonary venous systems. When unilateral, effusions are often right-sided. [37]

If a person with a failure of one ventricle lives long enough, it will tend to progress to failure of both ventricles. For example, left ventricular failure allows pulmonary edema and pulmonary hypertension to occur, which increases stress on the right ventricle. Though still harmful, right ventricular failure is not as deleterious to the left side. [38]

Causes

Since heart failure is a syndrome and not a disease, establishing the underlying cause is vital to diagnosis and treatment. [39] [30] In heart failure, the structure or the function of the heart or in some cases both are altered. [6] :3612 Heart failure is the potential end stage of all heart diseases. [40]

Common causes of heart failure include coronary artery disease, including a previous myocardial infarction (heart attack), high blood pressure, atrial fibrillation, valvular heart disease, excess alcohol use, infection, and cardiomyopathy of an unknown cause. [9] [4] :e279 [6] :Table 5 In addition, viral infection and subsequent inflammation of the heart's myocardial tissue (termed myocarditis) can similarly contribute to the development of heart failure. Genetic predisposition plays an important role. If more than one cause is present, progression is more likely and prognosis is worse. [41]

Heart damage can predispose a person to develop heart failure later in life and has many causes including systemic viral infections (e.g., HIV), chemotherapeutic agents such as daunorubicin, cyclophosphamide, trastuzumab and substance use disorders of substances such as alcohol, cocaine, and methamphetamine. An uncommon cause is exposure to certain toxins such as lead and cobalt. Additionally, infiltrative disorders such as amyloidosis and connective tissue diseases such as systemic lupus erythematosus have similar consequences. Obstructive sleep apnea (a condition of sleep wherein disordered breathing overlaps with obesity, hypertension, and/or diabetes) is regarded as an independent cause of heart failure. [42] Recent reports from clinical trials have also linked variation in blood pressure to heart failure [43] [44] and cardiac changes that may give rise to heart failure. [45]

High-output heart failure

High-output heart failure happens when the amount of blood pumped out is more than typical and the heart cannot keep up. [46] This can occur in overload situations such as blood or serum infusions, kidney diseases, chronic severe anemia, beriberi (vitamin B1/thiamine deficiency), hyperthyroidism, cirrhosis, Paget's disease, multiple myeloma, arteriovenous fistulae, or arteriovenous malformations. [47] [48]

Acute decompensation

Kerley B lines in radiograph of acute cardiac decompensation. The short, horizontal lines can be found everywhere in the right lung. Kerley-B-Linien.jpg
Kerley B lines in radiograph of acute cardiac decompensation. The short, horizontal lines can be found everywhere in the right lung.

Chronic stable heart failure may easily decompensate (fail to meet the body's metabolic needs). This most commonly results from a concurrent illness (such as myocardial infarction (a heart attack) or pneumonia), abnormal heart rhythms, uncontrolled hypertension, or a person's failure to maintain a fluid restriction, diet, or medication. [49]

Other factors that may worsen CHF include: anemia, hyperthyroidism, excessive fluid or salt intake, and medication such as NSAIDs and thiazolidinediones. [50] NSAIDs increase the risk twofold. [51]

Medications

A number of medications may cause or worsen the disease. This includes NSAIDs, COX-2 inhibitors, a number of anesthetic agents such as ketamine, thiazolidinediones, some cancer medications, several antiarrhythmic medications, pregabalin, alpha-2 adrenergic receptor agonists, minoxidil, itraconazole, cilostazol, anagrelide, stimulants (e.g., methylphenidate), tricyclic antidepressants, lithium, antipsychotics, dopamine agonists, TNF inhibitors, calcium channel blockers (especially verapamil and diltiazem [52] [53] ), salbutamol, and tamsulosin. [54]

By inhibiting the formation of prostaglandins, NSAIDs may exacerbate heart failure through several mechanisms, including promotion of fluid retention, increasing blood pressure, and decreasing a person's response to diuretic medications. [54] Similarly, the ACC/AHA recommends against using COX-2 inhibitor medications in people with heart failure. [54] Thiazolidinediones have been strongly linked to new cases of heart failure and worsening of pre-existing congestive heart failure due to their association with weight gain and fluid retention. [54] Certain calcium channel blockers, such as diltiazem and verapamil, are known to decrease the force with which the heart ejects blood, thus are not recommended in people with heart failure with a reduced ejection fraction. [54]

Breast cancer patients are at high risk of heart failure due to several factors. [55] After analyzing data from 26 studies (836,301 patients), the recent meta-analysis found that breast cancer survivors demonstrated a higher risk heart failure within first ten years after diagnosis (hazard ratio = 1.21; 95% CI: 1.1, 1.33). [56] The pooled incidence of heart failure in breast cancer survivors was 4.44 (95% CI 3.33-5.92) per 1000 person-years of follow-up. [56]

Supplements

Certain alternative medicines carry a risk of exacerbating existing heart failure, and are not recommended. [54] This includes aconite, ginseng, gossypol, gynura, licorice, lily of the valley, tetrandrine, and yohimbine. [54] Aconite can cause abnormally slow heart rates and abnormal heart rhythms such as ventricular tachycardia. [54] Ginseng can cause abnormally low or high blood pressure and may interfere with the effects of diuretic medications. Gossypol can increase the effects of diuretics, leading to toxicity.

Gynura can cause low blood pressure. Licorice can worsen heart failure by increasing blood pressure and promoting fluid retention. [54] Lily of the Valley can cause abnormally slow heart rates with mechanisms similar to those of digoxin. Tetrandrine can lower blood pressure by inhibiting L-type calcium channels. Yohimbine can exacerbate heart failure by increasing blood pressure through alpha-2 adrenergic receptor antagonism. [54]

Pathophysiology

Model of a normal heart (left); and a weakened heart, with over-stretched muscle and dilation of left ventricle (right); both during diastole Right side heart failure.jpg
Model of a normal heart (left); and a weakened heart, with over-stretched muscle and dilation of left ventricle (right); both during diastole

Heart failure is caused by any condition that reduces the efficiency of the heart muscle, through damage or overloading. Over time, these increases in workload, which are mediated by long-term activation of neurohormonal systems such as the renin–angiotensin system and the sympathoadrenal system, lead to fibrosis, dilation, and structural changes in the shape of the left ventricle from elliptical to spherical. [22]

The heart of a person with heart failure may have a reduced force of contraction due to overloading of the ventricle. In a normal heart, increased filling of the ventricle results in increased contraction force by the Frank–Starling law of the heart, and thus a rise in cardiac output. In heart failure, this mechanism fails, as the ventricle is loaded with blood to the point where heart muscle contraction becomes less efficient. This is due to the reduced ability to cross-link actin and myosin myofilaments in over-stretched heart muscle. [57]

Diagnosis

No diagnostic criteria have been agreed on as the gold standard for heart failure, especially heart failure with preserved ejection fraction (HFpEF).

In the UK, the National Institute for Health and Care Excellence recommends measuring N-terminal pro-BNP (NT-proBNP) followed by an ultrasound of the heart if positive. [14] In Europe, the European Society of Cardiology, and in the United States, the AHA/ACC/HFSA, recommend measuring NT-proBNP or BNP followed by an ultrasound of the heart if positive. [6] [4] This is recommended in those with symptoms consistent with heart failure such as shortness of breath. [4]

The European Society of Cardiology defines the diagnosis of heart failure as symptoms and signs consistent with heart failure in combination with "objective evidence of cardiac structural or functional abnormalities". [6] This definition is consistent with an international 2021 report termed "Universal Definition of Heart Failure". [6] :3613 Score-based algorithms have been developed to help in the diagnosis of HFpEF, which can be challenging for physicians to diagnose. [6] :3630 The AHA/ACC/HFSA defines heart failure as symptoms and signs consistent with heart failure in combination with shown "structural and functional alterations of the heart as the underlying cause for the clinical presentation", for HFmrEF and HFpEF specifically requiring "evidence of spontaneous or provokable increased left ventricle filling pressures". [4] :e276–e277

Algorithms

The European Society of Cardiology has developed a diagnostic algorithm for HFpEF, named HFA-PEFF. [6] :3630 [58] HFA-PEFF considers symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes, elderly, atrial fibrillation), and diagnostic laboratory tests, ECG, and echocardiography. [4] :e277 [58]

Classification

"Left", "right" and mixed heart failure

One historical method of categorizing heart failure is by the side of the heart involved (left heart failure versus right heart failure). Right heart failure was thought to compromise blood flow to the lungs compared to left heart failure compromising blood flow to the aorta and consequently to the brain and the remainder of the body's systemic circulation. However, mixed presentations are common, and left heart failure is a common cause of right heart failure. [59]

By ejection fraction

A more accurate classification of heart failure type is made by measuring ejection fraction, or the proportion of blood pumped out of the heart during a single contraction. [60] Ejection fraction is given as a percentage with the normal range being between 50 and 75%. [60] The types are:

  1. Heart failure with reduced ejection fraction (HFrEF): Synonyms no longer recommended are "heart failure due to left ventricular systolic dysfunction" and "systolic heart failure". [61] HFrEF is associated with an ejection fraction less than 40%. [62]
  2. Heart failure with mildly reduced ejection fraction (HFmrEF), previously called "heart failure with mid-range ejection fraction", [63] is defined by an ejection fraction of 41–49%. [63]
  3. Heart failure with preserved ejection fraction (HFpEF): Synonyms no longer recommended include "diastolic heart failure" and "heart failure with normal ejection fraction." [10] [18] HFpEF occurs when the left ventricle contracts normally during systole, but the ventricle is stiff and does not relax normally during diastole, which impairs filling. [10]
  4. Heart failure with recovered ejection fraction (HFrecovEF or HFrecEF): patients previously with HFrEF with complete normalization of left ventricular ejection (≥50%). [64] [65]

Heart failure may also be classified as acute or chronic. Chronic heart failure is a long-term condition, usually kept stable by the treatment of symptoms. Acute decompensated heart failure is a worsening of chronic heart failure symptoms, which can result in acute respiratory distress. [66] High-output heart failure can occur when there is increased cardiac demand that results in increased left ventricular diastolic pressure which can develop into pulmonary congestion (pulmonary edema). [46]

Several terms are closely related to heart failure and may be the cause of heart failure, but should not be confused with it. Cardiac arrest and asystole refer to situations in which no cardiac output occurs at all. Without urgent treatment, these events result in sudden death. Myocardial infarction ("Heart attack") refers to heart muscle damage due to insufficient blood supply, usually as a result of a blocked coronary artery. Cardiomyopathy refers specifically to problems within the heart muscle, and these problems can result in heart failure. [67] Ischemic cardiomyopathy implies that the cause of muscle damage is coronary artery disease. Dilated cardiomyopathy implies that the muscle damage has resulted in enlargement of the heart. [68] Hypertrophic cardiomyopathy involves enlargement and thickening of the heart muscle. [69]

Ultrasound

An echocardiogram (ultrasound of the heart) is commonly used to support a clinical diagnosis of heart failure. This can determine the stroke volume (SV, the amount of blood in the heart that exits the ventricles with each beat), the end-diastolic volume (EDV, the total amount of blood at the end of diastole), and the SV in proportion to the EDV, a value known as the ejection fraction (EF). In pediatrics, the shortening fraction is the preferred measure of systolic function. Normally, the EF should be between 50 and 70%; in systolic heart failure, it drops below 40%. Echocardiography can also identify valvular heart disease and assess the state of the pericardium (the connective tissue sac surrounding the heart). Echocardiography may also aid in deciding specific treatments, such as medication, insertion of an implantable cardioverter-defibrillator, or cardiac resynchronization therapy. Echocardiography can also help determine if acute myocardial ischemia is the precipitating cause, and may manifest as regional wall motion abnormalities on echo. [70]

Chest X-ray

Chest radiograph of a lung with distinct Kerley B lines, as well as an enlarged heart (as shown by an increased cardiothoracic ratio, cephalization of pulmonary veins, and minor pleural effusion as seen for example in the right horizontal fissure. Yet, no obvious lung edema is seen. Overall, this indicates intermediate severity (stage II) heart failure. Chest radiograph with signs of congestive heart failure - annotated.jpg
Chest radiograph of a lung with distinct Kerley B lines, as well as an enlarged heart (as shown by an increased cardiothoracic ratio, cephalization of pulmonary veins, and minor pleural effusion as seen for example in the right horizontal fissure. Yet, no obvious lung edema is seen. Overall, this indicates intermediate severity (stage II) heart failure.

Chest X-rays are frequently used to aid in the diagnosis of CHF. In a person who is compensated, this may show cardiomegaly (visible enlargement of the heart), quantified as the cardiothoracic ratio (proportion of the heart size to the chest). In left ventricular failure, evidence may exist of vascular redistribution (upper lobe blood diversion or cephalization), Kerley lines, cuffing of the areas around the bronchi, and interstitial edema. Ultrasound of the lung may also detect Kerley lines. [72]

Electrophysiology

An electrocardiogram (ECG or EKG) may be used to identify arrhythmias, ischemic heart disease, right and left ventricular hypertrophy, and presence of conduction delay or abnormalities (e.g. left bundle branch block). Although these findings are not specific to the diagnosis of heart failure, a normal ECG virtually excludes left ventricular systolic dysfunction. [73]

Blood tests

N-terminal pro-BNP (NT-proBNP) is the favored biomarker for the diagnosis of heart failure, according to guidelines published 2018 by NICE in the UK. [3] Brain natriuretic peptide 32 (BNP) is another biomarker commonly tested for heart failure. [74] [6] [75] An elevated NT-proBNP or BNP is a specific test indicative of heart failure. Additionally, NT-proBNP or BNP can be used to differentiate between causes of dyspnea due to heart failure from other causes of dyspnea. If a myocardial infarction is suspected, various cardiac markers may be used.

Blood tests routinely performed include electrolytes (sodium, potassium), measures of kidney function, liver function tests, thyroid function tests, a complete blood count, and often C-reactive protein if infection is suspected.

Hyponatremia (low serum sodium concentration) is common in heart failure. Vasopressin levels are usually increased, along with renin, angiotensin II, and catecholamines to compensate for reduced circulating volume due to inadequate cardiac output. This leads to increased fluid and sodium retention in the body; the rate of fluid retention is higher than the rate of sodium retention in the body, this phenomenon causes hypervolemic hyponatremia (low sodium concentration due to high body fluid retention). This phenomenon is more common in older women with low body mass. Severe hyponatremia can result in accumulation of fluid in the brain, causing cerebral edema and intracranial hemorrhage. [76]

Angiography

Angiography is the X-ray imaging of blood vessels, which is done by injecting contrast agents into the bloodstream through a thin plastic tube (catheter), which is placed directly in the blood vessel. X-ray images are called angiograms. [77] Heart failure may be the result of coronary artery disease, and its prognosis depends in part on the ability of the coronary arteries to supply blood to the myocardium (heart muscle). As a result, coronary catheterization may be used to identify possibilities for revascularisation through percutaneous coronary intervention or bypass surgery.

Staging

Heart failure is commonly stratified by the degree of functional impairment conferred by the severity of the heart failure, as reflected in the New York Heart Association (NYHA) functional classification. [78] The NYHA functional classes (I–IV) begin with class I, which is defined as a person who experiences no limitation in any activities and has no symptoms from ordinary activities. People with NYHA class II heart failure have slight, mild limitations with everyday activities; the person is comfortable at rest or with mild exertion. With NYHA class III heart failure, a marked limitation occurs with any activity; the person is comfortable only at rest. A person with NYHA class IV heart failure is symptomatic at rest and becomes quite uncomfortable with any physical activity. This score documents the severity of symptoms and can be used to assess response to treatment. While its use is widespread, the NYHA score is not very reproducible and does not reliably predict walking distance or exercise tolerance on formal testing. [79]

In its 2001 guidelines, the American College of Cardiology/American Heart Association working group introduced four stages of heart failure: [80]

The ACC staging system is useful since stage A encompasses "pre-heart failure" – a stage where intervention with treatment can presumably prevent progression to overt symptoms. ACC stage A does not have a corresponding NYHA class. ACC stage B would correspond to NYHA class I. ACC stage C corresponds to NYHA class II and III, while ACC stage D overlaps with NYHA class IV.

Histopathology

Siderophages (one indicated by white arrow) and pulmonary congestion, indicating left congestive heart failure Histopathology of pulmonary congestion and siderophages.jpg
Siderophages (one indicated by white arrow) and pulmonary congestion, indicating left congestive heart failure

Histopathology can diagnose heart failure in autopsies. The presence of siderophages indicates chronic left-sided heart failure, but is not specific for it. [81] It is also indicated by congestion of the pulmonary circulation.

Prevention

A person's risk of developing heart failure is inversely related to the level of physical activity. Those who achieved at least 500 MET-minutes/week (the recommended minimum by U.S. guidelines) had lower heart failure risk than individuals who did not report exercising during their free time; the reduction in heart failure risk was even greater in those who engaged in higher levels of physical activity than the recommended minimum. [82] Heart failure can also be prevented by lowering high blood pressure and high blood cholesterol, and by controlling diabetes. Maintaining a healthy weight, and decreasing sodium, alcohol, and sugar intake, may help. Additionally, avoiding tobacco use has been shown to lower the risk of heart failure. [83]

According to Johns Hopkins and the American Heart Association there are a few ways to help prevent a cardiac event. Johns Hopkins states that stopping tobacco use, reducing high blood pressure, physical activity, and nutrition can drastically affect the chances of developing heart disease. High blood pressure accounts for most cardiovascular deaths. High blood pressure can be lowered into the normal range by making dietary decisions such as consuming less salt. Exercise also helps to bring blood pressure back down. One of the best ways to help avoid heart failure is to promote healthier eating habits like eating more vegetables, fruits, grains, and lean protein. [84]

Diabetes is a major risk factor for heart failure. For women with Coronary Heart disease (CHD), diabetes was the strongest risk factor for heart failure. [85] Diabetic women with depressed creatinine clearance or elevated BMI were at the highest risk of heart failure. While the annual incidence rate of heart failure for non-diabetic women with no risk factors is 0.4%, the annual incidence rate for diabetic women with elevated body mass index (BMI) and depressed creatinine clearance was 7% and 13%, respectively. [86]

Management

Treatment focuses on improving the symptoms and preventing the progression of the disease. Reversible causes of heart failure also need to be addressed (e.g. infection, alcohol ingestion, anemia, thyrotoxicosis, arrhythmia, and hypertension). Treatments include lifestyle and pharmacological modalities, and occasionally various forms of device therapy. Rarely, cardiac transplantation is used as an effective treatment when heart failure has reached the end stage. [87]

Acute decompensation

In acute decompensated heart failure, the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are adequate. Immediate treatments usually involve some combination of vasodilators such as nitroglycerin, diuretics such as furosemide, and possibly noninvasive positive pressure ventilation. Supplemental oxygen is indicated in those with oxygen saturation levels below 90%, but is not recommended in those with normal oxygen levels in the normal atmosphere. [88]

Chronic management

The goals of treatment for people with chronic heart failure are prolonging life, preventing acute decompensation, and reducing symptoms, allowing for greater activity.

Heart failure can result from a variety of conditions. In considering therapeutic options, excluding reversible causes is of primary importance, including thyroid disease, anemia, chronic tachycardia, alcohol use disorder, hypertension, and dysfunction of one or more heart valves. Treatment of the underlying cause is usually the first approach to treating heart failure. In most cases, though, either no primary cause is found or treatment of the primary cause does not restore normal heart function. In these cases, behavioral, medical and device treatment strategies exist that can provide a significant improvement in outcomes, including the relief of symptoms, exercise tolerance, and a decrease in the likelihood of hospitalization or death. Breathlessness rehabilitation for chronic obstructive pulmonary disease and heart failure has been proposed with exercise training as a core component. Rehabilitation should also include other interventions to address shortness of breath including the psychological and educational needs of people and the needs of caregivers. [89] Iron supplementation appears to reduce hospitalization but not all-cause mortality in patients with iron deficiency and heart failure. [90]

Advance care planning

The latest evidence indicates that advance care planning (ACP) may help to increase documentation by medical staff regarding discussions with participants and improve an individual's depression. [91] This involves discussing an individual's future care plan, preferences, and values. The findings are, however, based on low-quality evidence. [91]

Monitoring

The various measures often used to assess the progress of people being treated for heart failure include fluid balance (calculation of fluid intake and excretion) and monitoring body weight (which in the shorter term reflects fluid shifts). [92] Remote monitoring can be effective to reduce complications for people with heart failure. [93] [94]

Lifestyle

Behavior modification is a primary consideration in chronic heart failure management programs, with dietary guidelines regarding fluid and salt intake. [95] Fluid restriction is important to reduce fluid retention in the body and to correct the hyponatremic status of the body. [76] The evidence of the benefit of reducing salt, however, is poor as of 2018. [96] Thirst is a common and burdensome symptom for patients to cope with. Chewing gum is an effective intervention to relieve thirst in patients experiencing heart failure, although patient acceptability remains an issue.

Exercise and physical activity

Exercise should be encouraged and tailored to suit an individual's capabilities. A meta-analysis found that center-based group interventions delivered by a physiotherapist help promote physical activity in HF. [97] There is a need for additional training for physiotherapists in delivering behavior change intervention alongside an exercise program. An intervention is expected to be more efficacious in encouraging physical activity than the usual care if it includes Prompts and cues to walk or exercise, like a phone call or a text message. It is helpful if a trusted clinician provides explicit advice to engage in physical activity (Credible source). Another highly effective strategy is to place objects that will serve as a cue to engage in physical activity in the person's everyday environment (Adding object to the environment; e.g., exercise step or treadmill). Encouragement to walk or exercise in various settings beyond CR (e.g., home, neighborhood, parks) is also promising (Generalisation of target behavior). Additional promising strategies are Graded tasks (e.g., gradual increase in intensity and duration of exercise training), Self-monitoring, Monitoring of physical activity by others without feedback, Action planning, and Goal-setting. [98] The inclusion of regular physical conditioning as part of a cardiac rehabilitation program can significantly improve quality of life and reduce the risk of hospital admission for worsening symptoms, but no evidence shows a reduction in mortality rates as a result of exercise.

Home visits and regular monitoring at heart-failure clinics reduce the need for hospitalization and improve life expectancy. [99]

Medication

Quadruple medical therapy using a combination of angiotensin receptor-neprilysin inhibitors (ARNI), beta blockers, mineralocorticoid receptor antagonists (MRA), and sodium/glucose cotransporter 2 inhibitors (SGLT2 inhibitors) is the standard of care as of 2021 for heart failure with reduced ejection fraction (HFrEF). [100] [101]

There is no convincing evidence for pharmacological treatment of heart failure with preserved ejection fraction (HFpEF). [6] Medication for HFpEF is symptomatic treatment with diuretics to treat congestion. [6] Managing risk factors and comorbidities such as hypertension is recommended in HFpEF. [6]

Inhibitors of the renin–angiotensin system (RAS) are recommended for heart failure. The angiotensin receptor-neprilysin inhibitors (ARNI) sacubitril/valsartan is recommended as the first choice of RAS inhibitors in American guidelines published by AHA/ACC in 2022. [4] Use of ACE inhibitor, or angiotensin receptor blockers (ARBs) if the person develops a long-term cough as a side effect of the ACE-I, [102] is associated with improved survival, fewer hospitalizations for heart failure exacerbations, and improved quality of life in people with heart failure. [103] European guidelines published by ESC in 2021 recommends that ARNI should be used in those who still have symptoms while on an ACE-I or ARB, beta blocker, and a mineralocorticoid receptor antagonist. Use of the combination agent ARNI requires the cessation of ACE-I or ARB therapy at least 36 hours before its initiation. [4]

Beta-adrenergic blocking agents (beta blockers) add to the improvement in symptoms and mortality provided by ACE-I/ARB. [103] [104] The mortality benefits of beta blockers in people with systolic dysfunction who also have atrial fibrillation is more limited than in those who do not have it. [105] If the ejection fraction is not diminished (HFpEF), the benefits of beta blockers are more modest; a decrease in mortality has been observed, but reduction in hospital admission for uncontrolled symptoms has not been observed. [106]

In people who are intolerant of ACE-I and ARB or who have significant kidney dysfunction, the use of combined hydralazine and a long-acting nitrate, such as isosorbide dinitrate, is an effective alternate strategy. This regimen has been shown to reduce mortality in people with moderate heart failure. [107] It is especially beneficial in the black population. [a] [107]

Use of a mineralocorticoid antagonist, such as spironolactone or eplerenone, in addition to beta blockers and ACE-I, can improve symptoms and reduce mortality in people with symptomatic heart failure with reduced ejection fraction (HFrEF). [16]

SGLT2 inhibitors are used for heart failure with reduced ejection fraction as they have demonstrated benefits in reducing hospitalizations and mortality, regardless of whether an individual has comorbid Type 2 Diabetes or not. [4] [108]

Other medications

Second-line medications for CHF do not confer a mortality benefit. Digoxin is one such medication. Its narrow therapeutic window, a high degree of toxicity, and the failure of multiple trials to show a mortality benefit have reduced its role in clinical practice. It is now used in only a small number of people with refractory symptoms, who are in atrial fibrillation, and/or who have chronic hypotension. [109] [110]

Diuretics have been a mainstay of treatment against symptoms of fluid accumulation, and include diuretics classes such as loop diuretics (such as furosemide), thiazide-like diuretics, and potassium-sparing diuretics. Although widely used, evidence on their efficacy and safety is limited, except for mineralocorticoid antagonists such as spironolactone. [16] [111]

Anemia is an independent factor in mortality in people with chronic heart failure. Treatment of anemia significantly improves the quality of life for those with heart failure, often with a reduction in severity of the NYHA classification, and also improves mortality rates. [112] [113] The European Society of Cardiology recommends screening for iron deficiency and treating with intravenous iron if deficiency is found. [6] :3668–3669

The decision to anticoagulate people with HF, typically with left ventricular ejection fractions <35% is debated, but generally, people with coexisting atrial fibrillation, a prior embolic event, or conditions that increase the risk of an embolic event such as amyloidosis, left ventricular noncompaction, familial dilated cardiomyopathy, or a thromboembolic event in a first-degree relative. [80]

Vasopressin receptor antagonists can also treat heart failure. Conivaptan is the first medication approved by the US Food and Drug Administration for the treatment of euvolemic hyponatremia in those with heart failure. [76] In rare cases hypertonic 3% saline together with diuretics may be used to correct hyponatremia. [76]

Ivabradine is recommended for people with symptomatic heart failure with reduced left ventricular ejection fraction who are receiving optimized guideline-directed therapy (as above) including the maximum tolerated dose of beta-blocker, have a normal heart rhythm and continue to have a resting heart rate above 70 beats per minute. [114] Ivabradine has been found to reduce the risk of hospitalization for heart failure exacerbations in this subgroup of people with heart failure. [114]

Implanted devices

In people with severe cardiomyopathy (left ventricular ejection fraction below 35%), or in those with recurrent VT or malignant arrhythmias, treatment with an automatic implantable cardioverter-defibrillator (AICD) is indicated to reduce the risk of severe life-threatening arrhythmias. The AICD does not improve symptoms or reduce the incidence of malignant arrhythmias but does reduce mortality from those arrhythmias, often in conjunction with antiarrhythmic medications. In people with left ventricular ejection (LVEF) below 35%, the incidence of ventricular tachycardia or sudden cardiac death is high enough to warrant AICD placement. Its use is therefore recommended in AHA/ACC guidelines. [20]

Cardiac contractility modulation (CCM) is a treatment for people with moderate to severe left ventricular systolic heart failure (NYHA classes II–IV), which enhances both the strength of ventricular contraction and the heart's pumping capacity. The CCM mechanism is based on stimulation of the cardiac muscle by nonexcitatory electrical signals, which are delivered by a pacemaker-like device. CCM is particularly suitable for the treatment of heart failure with normal QRS complex duration (120 ms or less) and has been demonstrated to improve the symptoms, quality of life, and exercise tolerance. [21] [115] [116] [117] [118] CCM is approved for use in Europe, and was approved by the Food and Drug Administration for use in the United States in 2019. [119] [120] [121]

About one-third of people with an LVEF below 35% have markedly altered conduction to the ventricles, resulting in dyssynchronous depolarization of the right and left ventricles. This is especially problematic in people with left bundle branch block (blockage of one of the two primary conducting fiber bundles that originate at the base of the heart and carry depolarizing impulses to the left ventricle). Using a special pacing algorithm, biventricular cardiac resynchronization therapy (CRT) can initiate a normal sequence of ventricular depolarization. In people with LVEF below 35% and prolonged QRS duration on ECG (LBBB or QRS of 150 ms or more), an improvement in symptoms and mortality occurs when CRT is added to standard medical therapy. [122] However, in the two-thirds of people without prolonged QRS duration, CRT may be harmful. [20] [21] [123]

Surgical therapies

People with the most severe heart failure may be candidates for ventricular assist devices, which have commonly been used as a bridge to heart transplantation but have been used more recently as a destination treatment for advanced heart failure. [124]

In select cases, heart transplantation can be considered. While this may resolve the problems associated with heart failure, the person must generally remain on an immunosuppressive regimen to prevent rejection, which has its own significant downsides. [125] A major limitation of this treatment option is the scarcity of hearts available for transplantation.

Palliative care

People with heart failure often have significant symptoms, such as shortness of breath and chest pain. Palliative care should be initiated early in the HF trajectory, and should not be an option of last resort. [126] Palliative care can not only provide symptom management, but also assist with advanced care planning, goals of care in the case of a significant decline, and making sure the person has a medical power of attorney and discussed his or her wishes with this individual. [127] A 2016 and 2017 review found that palliative care is associated with improved outcomes, such as quality of life, symptom burden, and satisfaction with care. [126] [128]

Without transplantation, heart failure may not be reversible and heart function typically deteriorates with time. The growing number of people with stage IV heart failure (intractable symptoms of fatigue, shortness of breath, or chest pain at rest despite optimal medical therapy) should be considered for palliative care or hospice, according to American College of Cardiology/American Heart Association guidelines. [127]

Prognosis

Prognosis in heart failure can be assessed in multiple ways, including clinical prediction rules and cardiopulmonary exercise testing. Clinical prediction rules use a composite of clinical factors such as laboratory tests and blood pressure to estimate prognosis. Among several clinical prediction rules for prognosticating acute heart failure, the 'EFFECT rule' slightly outperformed other rules in stratifying people and identifying those at low risk of death during hospitalization or within 30 days. [129] Easy methods for identifying people that are low-risk are:

A crucial method for assessing prognosis in people with advanced heart failure is cardiopulmonary exercise testing (CPX testing). CPX testing is usually required before heart transplantation as an indicator of prognosis. CPX testing involves the measurement of exhaled oxygen and carbon dioxide during exercise. The peak oxygen consumption (VO2 max) is used as an indicator of prognosis. As a general rule, a VO2 max less than 12–14 cc/kg/min indicates poor survival and suggests that the person may be a candidate for a heart transplant. People with a VO2 max <10 cc/kg/min have a poorer prognosis. The most recent International Society for Heart and Lung Transplantation guidelines [130] also suggest two other parameters that can be used for evaluation of prognosis in advanced heart failure, the heart failure survival score and the use of a criterion of VE/VCO2 slope > 35 from the CPX test. The heart failure survival score is calculated using a combination of clinical predictors and the VO2 max from the CPX test.

Heart failure is associated with significantly reduced physical and mental health, resulting in a markedly decreased quality of life. [131] [132] With the exception of heart failure caused by reversible conditions, the condition usually worsens with time. Although some people survive many years, progressive disease is associated with an overall annual mortality rate of 10%. [133]

Around 18 of every 1000 persons will experience an ischemic stroke during the first year after diagnosis of HF. As the duration of follow-up increases, the stroke rate rises to nearly 50 strokes per 1000 cases of HF by 5 years. [134]

Epidemiology

In 2022, heart failure affected about 64 million people globally. [135] Overall, around 2% of adults have heart failure. [22] In those over the age of 75, rates are greater than 10%. [22]

Rates are predicted to increase. [22] Increasing rates are mostly because of increasing lifespan, but also because of increased risk factors (hypertension, diabetes, dyslipidemia, and obesity) and improved survival rates from other types of cardiovascular disease (myocardial infarction, valvular disease, and arrhythmias). [136] [137] [138] Heart failure is the leading cause of hospitalization in people older than 65. [139]

United States

In the United States, heart failure affects 5.8 million people, and each year 550,000 new cases are diagnosed. [140] In 2011, heart failure was the most common reason for hospitalization for adults aged 85 years and older, and the second-most common for adults aged 65–84 years. [141] An estimated one in five adults at age 40 will develop heart failure during their remaining lifetimes and about half of people who develop heart failure die within 5 years of diagnosis. [142] Heart failure much higher in African Americans, Hispanics, Native Americans, and recent immigrants from Eastern Europe countries has been linked in these ethnic minority populations to the high incidence of diabetes and hypertension. [143]

Nearly one of every four people (24.7%) hospitalized in the U.S. with congestive heart failure is readmitted within 30 days. [144] Additionally, more than 50% of people seek readmission within 6 months after treatment and the average duration of hospital stay is 6 days. Heart failure is a leading cause of hospital readmissions in the U.S. People aged 65 and older were readmitted at a rate of 24.5 per 100 admissions in 2011. In the same year, heart failure patients under Medicaid were readmitted at a rate of 30.4 per 100 admissions, and uninsured people were readmitted at a rate of 16.8 per 100 admissions. These are the highest readmission rates for both categories. Notably, heart failure was not among the top-10 conditions with the most 30-day readmissions among the privately insured. [145]

United Kingdom

In the UK, despite moderate improvements in prevention, heart failure rates have increased due to population growth and aging. [146] Overall heart failure rates are similar to the four most common causes of cancer (breast, lung, prostate, and colon) combined. [146] People from deprived backgrounds are more likely to be diagnosed with heart failure at a younger age. [146]

Developing world

In tropical countries, the most common cause of heart failure is valvular heart disease or some type of cardiomyopathy. As underdeveloped countries have become more affluent, the incidences of diabetes, hypertension, and obesity have increased, which have in turn raised the incidence of heart failure.[ citation needed ]

Sex

Men have a higher incidence of heart failure, but the overall prevalence rate is similar in both sexes since women survive longer after the onset of heart failure. [147] Women tend to be older when diagnosed with heart failure (after menopause), they are more likely than men to have diastolic dysfunction, and seem to experience a lower overall quality of life than men after diagnosis. [147]

Ethnicity

Some sources state that people of Asian descent are at a higher risk of heart failure than other ethnic groups. [148] Other sources however have found that rates of heart failure are similar to rates found in other ethnic groups. [149]

History

For centuries, the disease entity which would include many cases of what today would be called heart failure was dropsy; the term denotes generalized edema, a major manifestation of a failing heart, though also caused by other diseases. Writings of ancient civilizations include evidence of their acquaintance with dropsy and heart failure: Egyptians were the first to use bloodletting to relieve fluid accumulation and shortage of breath, and provided what may have been the first documented observations on heart failure in the Ebers papyrus (around 1500 BCE). [150] Greeks described cases of dyspnea, fluid retention and fatigue compatible with heart failure. [151]

Romans used the flowering plant Drimia maritima (sea squill), which contains cardiac glycosides, for the treatment of dropsy; [152] descriptions pertaining to heart failure are also known in the civilizations of ancient India and China. [153] However, the manifestations of failing heart were understood in the context of these peoples' medical theories – including ancient Egyptian religion, Hippocratic theory of humours, or ancient Indian and Chinese medicine, and the current concept of heart failure had not developed yet. [151] [153] Although shortage of breath had been connected to heart disease by Avicenna round 1000 CE, [154] decisive for modern understanding of the nature of the condition were the description of pulmonary circulation by Ibn al-Nafis in the 13th century, and of systemic circulation by William Harvey in 1628. [151]

The role of the heart in fluid retention began to be better appreciated, as dropsy of the chest (fluid accumulation in and around the lungs causing shortness of breath) became more familiar and the current concept of heart failure, which brings together swelling and shortage of breath due to fluid retention, began to be accepted, in the 17th and especially in the 18th century: Richard Lower linked dyspnea and foot swelling in 1679, and Giovanni Maria Lancisi connected jugular vein distention with right ventricular failure in 1728. [154] Dropsy attributable to other causes, e.g. kidney failure, was differentiated in the 19th century. [155] [156] [157] The stethoscope, invented by René Laennec in 1819, x-rays, discovered by Wilhelm Röntgen in 1895, and electrocardiography, described by Willem Einthoven in 1903, facilitated the investigation of heart failure. [40] [157]

The 19th century also saw experimental and conceptual advances in the physiology of heart contraction, which led to the formulation of the Frank-Starling law of the heart (named after physiologists Otto Frank and Ernest Starling), a remarkable advance in understanding mechanisms of heart failure. [158]

One of the earliest treatments of heart failure, relief of swelling by bloodletting with various methods, including leeches, continued through the centuries. [159] Along with bloodletting, Jean-Baptiste de Sénac in 1749 recommended opiates for acute shortage of breath due to heart failure. [157] In 1785, William Withering described the therapeutic uses of the foxglove genus of plants in the treatment of edema; their extract contains cardiac glycosides, including digoxin, still used today in the treatment of heart failure. [152] The diuretic effects of inorganic mercury salts, which were used to treat syphilis, had already been noted in the 16th century by Paracelsus; [160] in the 19th century they were used by noted physicians like John Blackall and William Stokes. [161] In the meantime, cannulae (tubes) invented by English physician Reginald Southey in 1877 was another method of removing excess fluid by directly inserting into swollen limbs. [159]

Use of organic mercury compounds as diuretics, beyond their role in syphilis treatment, started in 1920, though it was limited by their parenteral route of administration and their side-effects. [161] [162] Oral mercurial diuretics were introduced in the 1950s; so were thiazide diuretics, which caused less toxicity, and are still used. [40] [161] Around the same time, the invention of echocardiography by Inge Edler and Hellmuth Hertz in 1954 marked a new era in the evaluation of heart failure. [40] In the 1960s, loop diuretics were added to available treatments of fluid retention, while a patient with heart failure received the first heart transplant by Christiaan Barnard. [40] [161] Over the following decades, new drug classes found their place in heart failure therapeutics, including vasodilators like hydralazine; renin-angiotensin system inhibitors; and beta-blockers. [163] [164]

Economics

In 2011, nonhypertensive heart failure was one of the 10 most expensive conditions seen during inpatient hospitalizations in the U.S., with aggregate inpatient hospital costs more than $10.5 billion. [165]

Heart failure is associated with a high health expenditure, mostly because of the cost of hospitalizations; costs have been estimated to amount to 2% of the total budget of the National Health Service in the United Kingdom, and more than $35 billion in the United States. [166] [167]

Research directions

Some research indicates that stem cell therapy may help. [168] Although this research indicated benefits of stem cell therapy, other research does not indicate benefit. [169] There is tentative evidence of longer life expectancy and improved left ventricular ejection fraction in persons treated with bone marrow-derived stem cells. [168]

The maintenance of heart function depends on appropriate gene expression that is regulated at multiple levels by epignetic mechanisms including DNA methylation and histone post-translational modification. [170] [171] Currently, an increasing body of research is directed at understanding the role of perturbations of epigenetic processes in cardiac hypertrophy and fibrotic scarring. [170] [171]

Notes

  1. Specifically, in one randomized control trial the patients self-identified as black (defined as of African descent), and in one randomized control trial the patients were defined as black, without further details given. [107]

Related Research Articles

<span class="mw-page-title-main">Aortic stenosis</span> Narrowing of the exit of the hearts left ventricle

Aortic stenosis is the narrowing of the exit of the left ventricle of the heart, such that problems result. It may occur at the aortic valve as well as above and below this level. It typically gets worse over time. Symptoms often come on gradually with a decreased ability to exercise often occurring first. If heart failure, loss of consciousness, or heart related chest pain occur due to AS the outcomes are worse. Loss of consciousness typically occurs with standing or exercising. Signs of heart failure include shortness of breath especially when lying down, at night, or with exercise, and swelling of the legs. Thickening of the valve without causing obstruction is known as aortic sclerosis.

<span class="mw-page-title-main">Myocarditis</span> Inflammation of the heart muscle

Myocarditis is defined as inflammation of the myocardium. Myocarditis can progress to inflammatory cardiomyopathy when there are associated ventricular remodeling and cardiac dysfunction due to chronic inflammation. Symptoms can include shortness of breath, chest pain, decreased ability to exercise, and an irregular heartbeat. The duration of problems can vary from hours to months. Complications may include heart failure due to dilated cardiomyopathy or cardiac arrest.

An ejection fraction (EF) is the volumetric fraction of fluid ejected from a chamber with each contraction. It can refer to the cardiac atrium, ventricle, gall bladder, or leg veins, although if unspecified it usually refers to the left ventricle of the heart. EF is widely used as a measure of the pumping efficiency of the heart and is used to classify heart failure types. It is also used as an indicator of the severity of heart failure, although it has recognized limitations.

<span class="mw-page-title-main">Mitral valve prolapse</span> Medical condition

Mitral valve prolapse (MVP) is a valvular heart disease characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. It is the primary form of myxomatous degeneration of the valve. There are various types of MVP, broadly classified as classic and nonclassic. In severe cases of classic MVP, complications include mitral regurgitation, infective endocarditis, congestive heart failure, and, in rare circumstances, cardiac arrest.

Hypertrophic cardiomyopathy is a condition in which muscle tissues of the heart become thickened without an obvious cause. The parts of the heart most commonly affected are the interventricular septum and the ventricles. This results in the heart being less able to pump blood effectively and also may cause electrical conduction problems. Specifically, within the bundle branches that conduct impulses through the interventricular septum and into the Purkinje fibers, as these are responsible for the depolarization of contractile cells of both ventricles.

<span class="mw-page-title-main">Dilated cardiomyopathy</span> Condition involving an enlarged, ineffective heart

Dilated cardiomyopathy (DCM) is a condition in which the heart becomes enlarged and cannot pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications can include heart failure, heart valve disease, or an irregular heartbeat.

<span class="mw-page-title-main">Aortic regurgitation</span> Medical condition

Aortic regurgitation (AR), also known as aortic insufficiency (AI), is the leaking of the aortic valve of the heart that causes blood to flow in the reverse direction during ventricular diastole, from the aorta into the left ventricle. As a consequence, the cardiac muscle is forced to work harder than normal.

<span class="mw-page-title-main">Pulmonary hypertension</span> Increased blood pressure in lung arteries

Pulmonary hypertension is a condition of increased blood pressure in the arteries of the lungs. Symptoms include shortness of breath, fainting, tiredness, chest pain, swelling of the legs, and a fast heartbeat. The condition may make it difficult to exercise. Onset is typically gradual. According to the definition at the 6th World Symposium of Pulmonary Hypertension in 2018, a patient is deemed to have pulmonary hypertension if the pulmonary mean arterial pressure is greater than 20mmHg at rest, revised down from a purely arbitrary 25mmHg, and pulmonary vascular resistance (PVR) greater than 3 Wood units.

<span class="mw-page-title-main">Mitral regurgitation</span> Form of valvular heart disease

Mitral regurgitation (MR), also known as mitral insufficiency or mitral incompetence, is a form of valvular heart disease in which the mitral valve is insufficient and does not close properly when the heart pumps out blood. It is the abnormal leaking of blood backwards – regurgitation from the left ventricle, through the mitral valve, into the left atrium, when the left ventricle contracts. Mitral regurgitation is the most common form of valvular heart disease.

<span class="mw-page-title-main">Peripartum cardiomyopathy</span> Medical condition

Peripartum cardiomyopathy (PPCM) is a form of dilated cardiomyopathy that is defined as a deterioration in cardiac function presenting typically between the last month of pregnancy and up to six months postpartum. As with other forms of dilated cardiomyopathy, PPCM involves systolic dysfunction of the heart with a decrease of the left ventricular ejection fraction (EF) with associated congestive heart failure and an increased risk of atrial and ventricular arrhythmias, thromboembolism (blockage of a blood vessel by a blood clot), and even sudden cardiac death. In essence, the heart muscle cannot contract forcefully enough to pump adequate amounts of blood for the needs of the body's vital organs.

<span class="mw-page-title-main">Hypertensive heart disease</span> Medical condition

Hypertensive heart disease includes a number of complications of high blood pressure that affect the heart. While there are several definitions of hypertensive heart disease in the medical literature, the term is most widely used in the context of the International Classification of Diseases (ICD) coding categories. The definition includes heart failure and other cardiac complications of hypertension when a causal relationship between the heart disease and hypertension is stated or implied on the death certificate. In 2013 hypertensive heart disease resulted in 1.07 million deaths as compared with 630,000 deaths in 1990.

Tachycardia-induced cardiomyopathy (TIC) is a disease where prolonged tachycardia or arrhythmia causes an impairment of the myocardium, which can result in heart failure. People with TIC may have symptoms associated with heart failure and/or symptoms related to the tachycardia or arrhythmia. Though atrial fibrillation is the most common cause of TIC, several tachycardias and arrhythmias have been associated with the disease.

<span class="mw-page-title-main">Disopyramide</span> Chemical compound

Disopyramide is an antiarrhythmic medication used in the treatment of ventricular tachycardia. It is a sodium channel blocker and is classified as a Class 1a anti-arrhythmic agent. Disopyramide has a negative inotropic effect on the ventricular myocardium, significantly decreasing the contractility. Disopyramide also has general anticholinergic effects which contribute to unwanted adverse effects. Disopyramide is available in both oral and intravenous forms. In 1972, when it was one of the only alternatives to quinidine, it was praised for being more potent and somewhat less toxic. However, a 2012 review of antiarrhythmic drugs noted that disopyramide is among the most toxic agents, with a high burden of side effects and increased mortality when used to treat atrial fibrillation.

<span class="mw-page-title-main">Ivabradine</span> Heart medication

Ivabradine, sold under the brand name Procoralan among others, is a medication, which is a pacemaker current (If) inhibitor, used for the symptomatic management of heart-related chest pain and heart failure. Patients who qualify for use of ivabradine for coronary heart failure are patients who have symptomatic heart failure, with reduced ejection volume, and heart rate at least 70 bpm, and the condition not able to be fully managed by beta blockers.

<span class="mw-page-title-main">Right ventricular hypertrophy</span> Medical condition

Right ventricular hypertrophy (RVH) is a condition defined by an abnormal enlargement of the cardiac muscle surrounding the right ventricle. The right ventricle is one of the four chambers of the heart. It is located towards the right lower chamber of the heart and it receives deoxygenated blood from the right upper chamber and pumps blood into the lungs.

<span class="mw-page-title-main">Acute decompensated heart failure</span> Medical condition

Acute decompensated heart failure (ADHF) is a sudden worsening of the signs and symptoms of heart failure, which typically includes difficulty breathing (dyspnea), leg or feet swelling, and fatigue. ADHF is a common and potentially serious cause of acute respiratory distress. The condition is caused by severe congestion of multiple organs by fluid that is inadequately circulated by the failing heart. An attack of decompensation can be caused by underlying medical illness, such as myocardial infarction, an abnormal heart rhythm, infection, or thyroid disease.

Management of heart failure requires a multimodal approach. It involves a combination of lifestyle modifications, medications, and possibly the use of devices or surgery. It may be noted that treatment can vary across continents and regions.

<span class="mw-page-title-main">Omecamtiv mecarbil</span> Chemical compound

Omecamtiv mecarbil (INN), previously referred to as CK-1827452, is a cardiac-specific myosin activator. It is an experimental drug being studied for a potential role in the treatment of left ventricular systolic heart failure.

<span class="mw-page-title-main">Heart failure with preserved ejection fraction</span> Medical condition

Heart failure with preserved ejection fraction (HFpEF) is a form of heart failure in which the ejection fraction – the percentage of the volume of blood ejected from the left ventricle with each heartbeat divided by the volume of blood when the left ventricle is maximally filled – is normal, defined as greater than 50%; this may be measured by echocardiography or cardiac catheterization. Approximately half of people with heart failure have preserved ejection fraction, while the other half have a reduction in ejection fraction, called heart failure with reduced ejection fraction (HFrEF).

<span class="mw-page-title-main">Ischemic cardiomyopathy</span> Medical condition

Ischemic cardiomyopathy is a type of cardiomyopathy caused by a narrowing of the coronary arteries which supply blood to the heart. Typically, patients with ischemic cardiomyopathy have a history of acute myocardial infarction, however, it may occur in patients with coronary artery disease, but without a past history of acute myocardial infarction. This cardiomyopathy is one of the leading causes of sudden cardiac death. The adjective ischemic means characteristic of, or accompanied by, ischemia — local anemia due to mechanical obstruction of the blood supply.

References

  1. Harrison RN, Daly L (2011). A Nurse's Survival Guide to Acute Medical Emergencies. Elsevier Health Sciences. p. 26. ISBN   978-0-7020-4900-2. Archived from the original on 9 August 2023. Retrieved 25 August 2020.
  2. "Congestive heart failure (CHF)". Archived from the original on 6 April 2016. Retrieved 12 November 2018.
  3. 1 2 3 4 National Guideline Centre (UK) (September 2018). "2. Introduction". Chronic Heart Failure in Adults: Diagnosis and Management. National Institute for Health and Care Excellence: Guidelines. London: National Institute for Health and Care Excellence (NICE). ISBN   978-1-4731-3093-7. PMID   30645061. Archived from the original on 20 March 2023. Retrieved 11 February 2023.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. (May 2022). "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Journal of the American College of Cardiology. 79 (17): e263–e421. doi: 10.1016/j.jacc.2021.12.012 . PMID   35379503. S2CID   247882156.
  5. Skipina TM, Upadhya B, Soliman EZ (July 2021). Munafò M (ed.). "Secondhand Smoke Exposure is Associated with Prevalent Heart Failure: Longitudinal Examination of the National Health and Nutrition Examination Survey". Nicotine & Tobacco Research. 23 (9). Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco: 1512–1517. doi:10.1093/ntr/ntab047. eISSN   1469-994X. LCCN   00244999. PMID   34213549. S2CID   235707832.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. (September 2021). "2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure" (PDF). European Heart Journal. 42 (36): 3599–3726. doi: 10.1093/eurheartj/ehab368 . PMID   34447992. Archived (PDF) from the original on 8 September 2022. Retrieved 7 February 2023.
  7. 1 2 3 Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care: Partial Update. National Clinical Guideline Centre. August 2010. pp. 38–70. PMID   22741186.
  8. 1 2 GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMC   5055577 . PMID   27733282.
  9. 1 2 McMurray JJ, Pfeffer MA (2005). "Heart failure". Lancet. 365 (9474): 1877–89. doi:10.1016/S0140-6736(05)66621-4. PMID   15924986. S2CID   38678826.
  10. 1 2 3 4 5 6 7 8 9 National Clinical Guideline Centre (UK) (August 2010). Chronic heart failure: National clinical guideline for diagnosis and management in primary and secondary care: Partial update. National Clinical Guideline Centre. pp. 19–24. PMID   22741186.
  11. "What is Heart Failure?". www.heart.org. Archived from the original on 10 August 2022. Retrieved 11 August 2022.
  12. Willard & Spackman's occupational therapy. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. 2014. p. 1124. ISBN   978-1-4511-1080-7.
  13. The Cardiac Care Unit Survival Guide. Lippincott Williams & Wilkins. 2012. p. 98. ISBN   978-1-4511-7746-6.
  14. 1 2 National Guideline Centre (UK) (September 2018). "1. Guideline summary". Chronic Heart Failure in Adults: Diagnosis and Management. National Institute for Health and Care Excellence: Guidelines. London: National Institute for Health and Care Excellence (NICE). ISBN   978-1-4731-3093-7. PMID   30645061. Archived from the original on 20 March 2023. Retrieved 11 February 2023.
  15. 1 2 Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care: Partial Update. National Clinical Guideline Centre. August 2010. pp. 34–47. PMID   22741186.
  16. 1 2 3 National Guideline Centre (UK) (September 2018). "6. Treating heart failure". Chronic Heart Failure in Adults: Diagnosis and Management. National Institute for Health and Care Excellence: Guidelines. London: National Institute for Health and Care Excellence (NICE). ISBN   978-1-4731-3093-7. PMID   30645061. Archived from the original on 19 March 2023. Retrieved 12 February 2023.
  17. National Guideline Centre (UK) (September 2018). "7. Rehabilitation in chronic heart failure". Chronic Heart Failure in Adults: Diagnosis and Management. National Institute for Health and Care Excellence: Guidelines. London: National Institute for Health and Care Excellence (NICE). ISBN   978-1-4731-3093-7. PMID   30645061. Archived from the original on 21 March 2023. Retrieved 12 February 2023.
  18. 1 2 Molloy C, Long L, Mordi IR, Bridges C, Sagar VA, Davies EJ, et al. (March 2024). "Exercise-based cardiac rehabilitation for adults with heart failure". The Cochrane Database of Systematic Reviews. 2024 (3): CD003331. doi:10.1002/14651858.CD003331.pub6. PMC  10919451. PMID   38451843.
  19. 1 2 Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care: Partial Update. National Clinical Guideline Centre. August 2010. pp. 71–153. PMID   22741186.
  20. 1 2 3 Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NA, et al. (October 2012). "2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. [corrected]". Circulation. 126 (14): 1784–800. doi: 10.1161/CIR.0b013e3182618569 . PMID   22965336.
  21. 1 2 3 Kuck KH, Bordachar P, Borggrefe M, Boriani G, Burri H, Leyva F, et al. (January 2014). "New devices in heart failure: a European Heart Rhythm Association report: developed by the European Heart Rhythm Association; endorsed by the Heart Failure Association". Europace. 16 (1): 109–28. doi: 10.1093/europace/eut311 . PMID   24265466.
  22. 1 2 3 4 5 6 7 Metra M, Teerlink JR (October 2017). "Heart failure". Lancet. 390 (10106): 1981–1995. doi:10.1016/S0140-6736(17)31071-1. PMID   28460827. S2CID   34893221.
  23. Retrum JH, Boggs J, Hersh A, Wright L, Main DS, Magid DJ, et al. (March 2013). "Patient-identified factors related to heart failure readmissions". Circulation: Cardiovascular Quality and Outcomes. 6 (2): 171–177. doi:10.1161/CIRCOUTCOMES.112.967356. PMC   4082819 . PMID   23386663.
  24. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. (January 2012). "Heart disease and stroke statistics--2012 update: a report from the American Heart Association". Circulation. 125 (1): e2–e220. doi:10.1161/cir.0b013e31823ac046. PMC   4440543 . PMID   22179539.
  25. "Do we expect the body to be a "One Hoss Shay"?". The Evolution and Medicine Review. 16 March 2010. Archived from the original on 4 July 2022. Retrieved 28 April 2022.
  26. McDonagh TA (2011). Oxford textbook of heart failure. Oxford: Oxford University Press. p. 3. ISBN   978-0-19-957772-9. Archived from the original on 9 August 2023. Retrieved 27 December 2021.
  27. Girerd N, Seronde MF, Coiro S, Chouihed T, Bilbault P, Braun F, et al. (2018). "Integrative Assessment of Congestion in Heart Failure Throughout the Patient Journey". JACC Heart Fail. 6 (4): 273–285. doi:10.1016/j.jchf.2017.09.023. PMID   29226815.
  28. 1 2 Thibodeau JT, Drazner MH (July 2018). "The Role of the Clinical Examination in Patients With Heart Failure". JACC. Heart Failure. 6 (7): 543–551. doi: 10.1016/j.jchf.2018.04.005 . PMID   29885957.
  29. "Pulse pressure". Cleveland Clinic. 28 July 2021. Archived from the original on 10 February 2023. Retrieved 10 February 2023. A narrow pulse pressure — sometimes called a low pulse pressure — is where your pulse pressure is one-fourth or less of your systolic pressure (the top number). This happens when your heart isn't pumping enough blood, which is seen in heart failure and certain heart valve diseases.
  30. 1 2 Types of heart failure. Institute for Quality and Efficiency in Health Care (IQWiG). 25 January 2018. Archived from the original on 20 February 2021. Retrieved 9 August 2021 via National Center for Biotechnology Information, U.S. National Library of Medicine.
  31. Adeyinka A, Kondamudi NP (2022). "Cyanosis". StatPearls. Treasure Island (FL): StatPearls Publishing. PMID   29489181. Archived from the original on 13 March 2021. Retrieved 11 May 2022.
  32. "Heart Murmur: Types & Causes". Cleveland Clinic. Archived from the original on 28 November 2022. Retrieved 11 May 2022.
  33. "What is Exercise Intolerance?". WebMD. Archived from the original on 11 May 2022. Retrieved 11 May 2022.
  34. "Heart Failure Signs and Symptoms". heart.org. American Heart Association. Archived from the original on 17 November 2022. Retrieved 16 November 2022.
  35. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. (14 July 2016). "2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC" (PDF). European Journal of Heart Failure (Review). 37 (27): 2129–2200. doi: 10.1093/eurheartj/ehw128 . hdl:2434/427148. PMID   27207191. S2CID   221675744. Archived (PDF) from the original on 7 February 2023. Retrieved 7 February 2023.
  36. Alcantara CA, Chandra A, Morvey D, von Schwarz ER (3 January 2018). "Acute Right Heart Failure". Right Heart Pathology. pp. 215–225. doi:10.1007/978-3-319-73764-5_10. ISBN   978-3-319-73763-8. PMC   7123149 .
  37. Bhatnagar R, Maskell N (September 2015). "The modern diagnosis and management of pleural effusions". BMJ. 351: h4520. doi:10.1136/bmj.h4520. hdl: 1983/deeb861e-d752-4e4c-a8d7-f00cc22eddac . PMID   26350935. S2CID   1883969. Archived from the original on 9 August 2023. Retrieved 13 February 2023.
  38. Sayer G, Semigran MJ (22 February 2017). "Acute and Chronic Right Ventricular Failure". Heart Failure. pp. 65–84. doi:10.1007/978-1-4471-4219-5_4. ISBN   978-1-4471-4218-8. PMC   7122716 .
  39. Ponikowski et al. 2016, p. 2136.
  40. 1 2 3 4 5 Davis RC, Hobbs FD, Lip GY (January 2000). "ABC of heart failure. History and epidemiology". BMJ. 320 (7226): 39–42. doi:10.1136/bmj.320.7226.39. PMC   1117316 . PMID   10617530.
  41. Hazebroek MR, Moors S, Dennert R, van den Wijngaard A, Krapels I, Hoos M, et al. (September 2015). "Prognostic Relevance of Gene-Environment Interactions in Patients With Dilated Cardiomyopathy: Applying the MOGE(S) Classification". Journal of the American College of Cardiology. 66 (12): 1313–23. doi: 10.1016/j.jacc.2015.07.023 . PMID   26383716.
  42. Khattak HK, Hayat F, Pamboukian SV, Hahn HS, Schwartz BP, Stein PK (June 2018). "Obstructive Sleep Apnea in Heart Failure: Review of Prevalence, Treatment with Continuous Positive Airway Pressure, and Prognosis". Texas Heart Institute Journal. 45 (3): 151–161. doi: 10.14503/THIJ-15-5678 . PMC   6059510 . PMID   30072851.
  43. Muntner P, Whittle J, Lynch AI, Colantonio LD, Simpson LM, Einhorn PT, et al. (September 2015). "Visit-to-Visit Variability of Blood Pressure and Coronary Heart Disease, Stroke, Heart Failure, and Mortality: A Cohort Study". Annals of Internal Medicine. 163 (5): 329–38. doi:10.7326/M14-2803. PMC   5021508 . PMID   26215765.
  44. Nuyujukian DS, Koska J, Bahn G, Reaven PD, Zhou JJ (July 2020). "Blood Pressure Variability and Risk of Heart Failure in ACCORD and the VADT". Diabetes Care. 43 (7): 1471–1478. doi:10.2337/dc19-2540. hdl: 10150/641980 . PMC   7305004 . PMID   32327422.
  45. Nwabuo CC, Yano Y, Moreira HT, Appiah D, Vasconcellos HD, Aghaji QN, et al. (July 2020). "Association Between Visit-to-Visit Blood Pressure Variability in Early Adulthood and Myocardial Structure and Function in Later Life". JAMA Cardiology. 5 (7): 795–801. doi:10.1001/jamacardio.2020.0799. PMC   7160747 . PMID   32293640.
  46. 1 2 "high-output heart failure" at Dorland's Medical Dictionary
  47. McCulloch B (December 2015). "High-Output Heart Failure Caused by Thyrotoxicosis and Beriberi". Crit Care Nurs Clin North Am. 27 (4): 499–510. doi:10.1016/j.cnc.2015.07.004. PMID   26567494.
  48. Carlisi M, Mancuso S, Lo Presti R, Siragusa S, Caimi G (January 2022). "High Output Heart Failure in Multiple Myeloma: Pathogenetic Considerations". Cancers (Basel). 14 (3): 610. doi: 10.3390/cancers14030610 . PMC   8833382 . PMID   35158878.
  49. Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al. (April 2008). "Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF". Archives of Internal Medicine. 168 (8): 847–54. doi:10.1001/archinte.168.8.847. PMID   18443260. S2CID   20912905.
  50. Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, et al. (February 2005). "Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology" (PDF). European Heart Journal. 26 (4): 384–416. doi: 10.1093/eurheartj/ehi044 . PMID   15681577. Archived (PDF) from the original on 10 August 2017. Retrieved 18 September 2019.
  51. Bhala N, Emberson J, Merhi A, Abramson S, Arber N, Baron JA, et al. (August 2013). "Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials". Lancet. 382 (9894): 769–79. doi:10.1016/S0140-6736(13)60900-9. PMC   3778977 . PMID   23726390.
  52. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. (2018). "2018 ESC/ESH Guidelines for the management of arterial hypertension". Eur Heart J. 39 (33): 3021–3104. doi: 10.1093/eurheartj/ehy339 . PMID   30165516.
  53. Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen R, Pratt N, et al. (2019). "Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis". Lancet. 394 (10211): 1816–1826. doi:10.1016/S0140-6736(19)32317-7. PMC   6924620 . PMID   31668726.
  54. 1 2 3 4 5 6 7 8 9 10 Page RL, O'Bryant CL, Cheng D, Dow TJ, Ky B, Stein CM, et al. (August 2016). "Drugs That May Cause or Exacerbate Heart Failure: A Scientific Statement From the American Heart Association". Circulation. 134 (6): e32–69. doi: 10.1161/CIR.0000000000000426 . PMID   27400984.
  55. Lenneman CG, Sawyer DB (March 2016). "Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment". Circulation Research. 118 (6): 1008–1020. doi:10.1161/CIRCRESAHA.115.303633. PMID   26987914.
  56. 1 2 Galimzhanov A, Istanbuly S, Tun HN, Ozbay B, Alasnag M, Ky B, et al. (December 2023). "Cardiovascular outcomes in breast cancer survivors: a systematic review and meta-analysis". European Journal of Preventive Cardiology. 30 (18): 2018–2031. doi: 10.1093/eurjpc/zwad243 . PMID   37499186.
  57. Boron WF, Boulpaep EL (2005). Medical Physiology: A Cellular and Molecular Approach (Updated ed.). Saunders. p. 533. ISBN   978-0-7216-3256-8.
  58. 1 2 Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. (October 2019). "How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)". European Heart Journal. 40 (40): 3297–3317. doi: 10.1093/eurheartj/ehz641 . PMID   31504452. Archived from the original on 20 February 2023. Retrieved 20 February 2023.
  59. "Heart Failure: Signs and Symptoms". UCSF Medical Center. Archived from the original on 7 April 2014.
  60. 1 2 "Ejection Fraction". Heart Rhythm Society. Archived from the original on 2 May 2014. Retrieved 7 June 2014.
  61. Santulli G, Wang X, Mone P (August 2022). "Updated ACC/AHA/HFSA 2022 guidelines on heart failure: what is new? From epidemiology to clinical management". Eur Heart J Cardiovasc Pharmacother. 8 (5): e23–e24. doi: 10.1093/ehjcvp/pvac029 . PMC   9366633 . PMID   35460242.
  62. "Ejection Fraction Heart Failure Measurement". American Heart Association. 11 February 2014. Archived from the original on 14 July 2014. Retrieved 7 June 2014.
  63. 1 2 "2021 ESC Clinical Practice Guidelines for the diagnosis and treatment of acute and chronic heart failure". European Society of Cardiology. 27 August 2021. Archived from the original on 6 February 2023. Retrieved 6 February 2023.
  64. Bozkurt B, Hershberger RE, Butler J, Grady KL, Heidenreich PA, Isler ML, et al. (April 2021). "2021 ACC/AHA Key Data Elements and Definitions for Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure)". Circulation: Cardiovascular Quality and Outcomes. 14 (4): e000102. doi:10.1161/HCQ.0000000000000102. PMC   8059763 . PMID   33755495.
  65. Devgun JK, Kennedy S, Slivnick J, Garrett Z, Dodd K, Derbala MH, et al. (February 2022). "Heart failure with recovered ejection fraction and the utility of defibrillator therapy: a review". ESC Heart Failure. 9 (1): 1–10. doi:10.1002/ehf2.13729. PMC   8787956 . PMID   34953039.
  66. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. (April 2009). "2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation". Circulation. 119 (14): 1977–2016. doi:10.1161/CIRCULATIONAHA.109.192064. PMID   19324967.
  67. Somma V, Ha FJ, Palmer S, Mohamed U, Agarwal S (October 2022). "Pacing-induced cardiomyopathy: A systematic review and meta-analysis of definition, prevalence, risk factors, and management". Heart Rhythm. 20 (2): 282–290. doi:10.1016/j.hrthm.2022.09.019. PMID   36356656. S2CID   253409509.
  68. Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, et al. (October 2021). "Electrical Ventricular Remodeling in Dilated Cardiomyopathy". Cells. 10 (10): 2767. doi: 10.3390/cells10102767 . PMC   8534398 . PMID   34685747.
  69. Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY (October 2019). "Prognostic Value of Global Longitudinal Strain in Hypertrophic Cardiomyopathy: A Systematic Review of Existing Literature". JACC Cardiovasc Imaging. 12 (10): 1930–1942. doi:10.1016/j.jcmg.2018.07.016. PMID   30219395. S2CID   52280408.
  70. Sirajuddin A, Mirmomen SM, Kligerman SJ, Groves DW, Burke AP, Kureshi F, et al. (1 July 2021). "Ischemic Heart Disease: Noninvasive Imaging Techniques and Findings". Radiographics. 41 (4): 990–1021. doi:10.1148/rg.2021200125. PMC   8262179 . PMID   34019437.
  71. 1 2 3 4 5 "UOTW #48 – Ultrasound of the Week". Ultrasound of the Week. 23 May 2015. Archived from the original on 9 May 2017. Retrieved 27 May 2017.
  72. Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D (August 2014). "Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis". Academic Emergency Medicine. 21 (8): 843–52. doi: 10.1111/acem.12435 . PMID   25176151.
  73. Loscalzo J, Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL (2008). Harrison's Principles of Internal Medicine (17 ed.). McGraw-Hill Medical. p. 1447. ISBN   978-0-07-147693-5.
  74. National Guideline Centre (UK) (September 2018). "5. Diagnosing heart failure". Chronic Heart Failure in Adults: Diagnosis and Management. National Institute for Health and Care Excellence: Guidelines. London: National Institute for Health and Care Excellence (NICE). ISBN   978-1-4731-3093-7. PMID   30645061. Archived from the original on 20 March 2023. Retrieved 12 February 2023.
  75. Ewald B, Ewald D, Thakkinstian A, Attia J (February 2008). "Meta-analysis of B type natriuretic peptide and N-terminal pro B natriuretic peptide in the diagnosis of clinical heart failure and population screening for left ventricular systolic dysfunction". Internal Medicine Journal. 38 (2): 101–13. doi:10.1111/j.1445-5994.2007.01454.x. PMID   18290826. S2CID   35294486.
  76. 1 2 3 4 Abraham WT (2008). "Managing hyponatremia in heart failure". US Cardiology Review. 5 (1): 57–60. doi: 10.15420/usc.2008.5.1.57 . Archived from the original on 16 November 2021. Retrieved 16 January 2018.
  77. "Angiography – Consumer Information – InsideRadiology". InsideRadiology. 23 September 2016. Archived from the original on 22 August 2017. Retrieved 22 August 2017.
  78. Criteria Committee, New York Heart Association (1964). Diseases of the heart and blood vessels. Nomenclature and criteria for diagnosis (6th ed.). Boston: Little, Brown. p. 114.
  79. Raphael C, Briscoe C, Davies J, Ian Whinnett Z, Manisty C, Sutton R, et al. (April 2007). "Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure". Heart. 93 (4): 476–82. doi:10.1136/hrt.2006.089656. PMC   1861501 . PMID   17005715.
  80. 1 2 Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. (September 2005). "ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society". Circulation. 112 (12): e154–235. doi: 10.1161/CIRCULATIONAHA.105.167586 . PMID   16160202.
  81. Majno G, Joris I (12 August 2004). Cells, Tissues, and Disease: Principles of General Pathology. Oxford University Press. p. 620. ISBN   978-0-19-974892-1 . Retrieved 19 March 2013.
  82. Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, et al. (November 2015). "Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis". Circulation. 132 (19): 1786–1794. doi: 10.1161/CIRCULATIONAHA.115.015853 . PMID   26438781.
  83. "Heart Failure: Am I at Risk, and Can I Prevent It?". Webmd. Archived from the original on 30 March 2018. Retrieved 13 November 2018.
  84. "2019 Updated Cardiovascular Disease Prevention Guidelines Announced - Johns Hopkins Medicine". clinicalconnection.hopkinsmedicine.org. 17 March 2019. Archived from the original on 5 July 2022. Retrieved 29 April 2022.
  85. Thom, T., Haase, N., Rosamond, W., Howard, V., Rumsfeld, J., & Manolio, T. et al. (2006). Heart Disease and Stroke Statistics—2006 Update. Circulation, 113(6). https://doi.org/10.1161/circulationaha.105.171600 Archived 9 August 2023 at the Wayback Machine
  86. Bibbins-Domingo, K., Lin, F., & Vittinghoff, E. (2005). Predictors of heart failure among women with coronary disease. ACC Current Journal Review, 14(2), 35–36. https://doi.org/10.1016/j.accreview.2004.12.100 Archived 9 August 2023 at the Wayback Machine
  87. Cebeci F, Arikan B, Catal E, Bayezid O (2021). "A bridge to transplantation: The life experiences of patients with a left ventricular assist device". Heart & Lung. 50 (1): 106–112. doi:10.1016/j.hrtlng.2020.09.020. PMID   33069454. S2CID   224780668.
  88. "Acute heart failure with dyspnoea. First-choice treatments". Prescrire International. 27 (194): 160–162. 2018.
  89. Man WD, Chowdhury F, Taylor RS, Evans RA, Doherty P, Singh SJ, et al. (August 2016). "Building consensus for provision of breathlessness rehabilitation for patients with chronic obstructive pulmonary disease and chronic heart failure". Chronic Respiratory Disease. 13 (3): 229–39. doi:10.1177/1479972316642363. PMC   5029782 . PMID   27072018.
  90. Zhou X, Xu W, Xu Y, Qian Z (August 2019). "Iron Supplementation Improves Cardiovascular Outcomes in Patients with Heart Failure". The American Journal of Medicine. 132 (8): 955–963. doi:10.1016/j.amjmed.2019.02.018. PMID   30853478. S2CID   73725232.
  91. 1 2 Nishikawa Y, Hiroyama N, Fukahori H, Ota E, Mizuno A, Miyashita M, et al. (Cochrane Heart Group) (February 2020). "Advance care planning for adults with heart failure". The Cochrane Database of Systematic Reviews. 2020 (2): CD013022. doi:10.1002/14651858.CD013022.pub2. PMC   7045766 . PMID   32104908.
  92. Yu CM, Wang L, Chau E, Chan RH, Kong SL, Tang MO, et al. (August 2005). "Intrathoracic impedance monitoring in patients with heart failure: correlation with fluid status and feasibility of early warning preceding hospitalization". Circulation. 112 (6): 841–848. doi: 10.1161/CIRCULATIONAHA.104.492207 . PMID   16061743.
  93. Bashi N, Karunanithi M, Fatehi F, Ding H, Walters D (January 2017). "Remote Monitoring of Patients With Heart Failure: An Overview of Systematic Reviews". Journal of Medical Internet Research. 19 (1): e18. doi: 10.2196/jmir.6571 . PMC   5291866 . PMID   28108430.
  94. Inglis SC, Clark RA, Dierckx R, Prieto-Merino D, Cleland JG (October 2015). "Structured telephone support or non-invasive telemonitoring for patients with heart failure" (PDF). The Cochrane Database of Systematic Reviews. 2015 (10): CD007228. doi:10.1002/14651858.CD007228.pub3. hdl:2328/35732. PMC   8482064 . PMID   26517969. Archived from the original on 28 August 2021. Retrieved 25 September 2019.
  95. "Lifestyle Changes for Heart Failure". American Heart Association. Archived from the original on 3 May 2015.
  96. Mahtani KR, Heneghan C, Onakpoya I, Tierney S, Aronson JK, Roberts N, et al. (November 2018). "Reduced Salt Intake for Heart Failure: A Systematic Review". JAMA Internal Medicine. 178 (12): 1693–1700. doi:10.1001/jamainternmed.2018.4673. PMC   6422065 . PMID   30398532. S2CID   53241717.
  97. Amirova A, Fteropoulli T, Williams P, Haddad M (June 2021). "Efficacy of interventions to increase physical activity for people with heart failure: a meta-analysis". Open Heart. 8 (1): e001687. doi:10.1136/openhrt-2021-001687. OCLC   9066065537. PMC   8191629 . PMID   34108272.
  98. Amirova A, Fteropoulli T, Williams P, Haddad M (June 2021). "Efficacy of interventions to increase physical activity for people with heart failure: a meta-analysis". Open Heart. 8 (1): e001687. doi: 10.1136/openhrt-2021-001687 . PMC   8191629 . PMID   34108272.
  99. Feltner C, Jones CD, Cené CW, Zheng ZJ, Sueta CA, Coker-Schwimmer EJ, et al. (June 2014). "Transitional care interventions to prevent readmissions for persons with heart failure: a systematic review and meta-analysis". Annals of Internal Medicine. 160 (11): 774–84. doi:10.7326/M14-0083. hdl: 11250/2485759 . PMID   24862840. S2CID   262525144.
  100. Greene S, Khan M, et al. (March 2021). "Quadruple Medical Therapy for Heart Failure". J Am Coll Cardiol. 77 (11): 1408–1411. doi: 10.1016/j.jacc.2021.02.006 . PMID   33736822. S2CID   232299815.
  101. Straw S, McGinlay M, Witte KK (2021). "Four pillars of heart failure: contemporary pharmacological therapy for heart failure with reduced ejection fraction". Open Heart . 8 (1): e001585. doi:10.1136/openhrt-2021-001585. PMC   7929859 . PMID   33653703.
  102. Goljan EF (2014). Rapid Review Pathology (4th ed.). Philadelphia, PA: Saunders/Elsevier. ISBN   978-0-323-08787-2.
  103. 1 2 National Institute for Health and Clinical Excellence . Clinical guideline 108: Chronic heart failure – managements (ARBs) of chronic heart failure in adults in primary and secondary care . London, August 2010.
  104. Kotecha D, Manzano L, Krum H, Rosano G, Holmes J, Altman DG, et al. (April 2016). "Effect of age and sex on efficacy and tolerability of β blockers in patients with heart failure with reduced ejection fraction: individual patient data meta-analysis". BMJ. 353: i1855. doi:10.1136/bmj.i1855. PMC   4849174 . PMID   27098105.
  105. Kotecha D, Holmes J, Krum H, Altman DG, Manzano L, Cleland JG, et al. (December 2014). "Efficacy of β blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis" (PDF). Lancet. 384 (9961): 2235–43. doi:10.1016/S0140-6736(14)61373-8. PMID   25193873. S2CID   25660815. Archived (PDF) from the original on 28 September 2020. Retrieved 27 May 2019.
  106. Liu F, Chen Y, Feng X, Teng Z, Yuan Y, Bin J (5 March 2014). "Effects of beta-blockers on heart failure with preserved ejection fraction: a meta-analysis". PLOS ONE. 9 (3): e90555. Bibcode:2014PLoSO...990555L. doi: 10.1371/journal.pone.0090555 . PMC   3944014 . PMID   24599093.
  107. 1 2 3 National Clinical Guideline Centre (UK) (August 2010). "Chapter 5: Treating heart failure". Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care (Partial Update [Internet]. ed.). London (UK): Royal College of Physicians. Archived from the original on 6 September 2017. Retrieved 31 August 2017.
  108. Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. (September 2020). "SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials". Lancet. 396 (10254): 819–829. doi:10.1016/S0140-6736(20)31824-9. PMID   32877652.
  109. "Congestive Heart Failure". The Lecturio Medical Concept Library. 7 August 2020. Archived from the original on 10 July 2021. Retrieved 10 July 2021.
  110. "Digoxin". The American Society of Health-System Pharmacists. Archived from the original on 21 December 2016. Retrieved 8 December 2016.
  111. von Lueder TG, Atar D, Krum H (October 2013). "Diuretic use in heart failure and outcomes". Clinical Pharmacology and Therapeutics. 94 (4): 490–8. doi:10.1038/clpt.2013.140. PMID   23852396. S2CID   7441258.
  112. He SW, Wang LX (2009). "The impact of anemia on the prognosis of chronic heart failure: a meta-analysis and systemic review". Congestive Heart Failure. 15 (3): 123–30. doi: 10.1111/j.1751-7133.2008.00030.x . PMID   19522961.
  113. Nunez-Gil MI, Peraira-Moral MJ (19 January 2012). "Anaemia in heart failure: intravenous iron therapy". e-Journal of the ESC Council for Cardiology Practice. 10 (16). Archived from the original on 3 June 2013. Retrieved 3 October 2012.
  114. 1 2 Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. (August 2017). "2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America". Circulation. 136 (6): e137–e161. doi: 10.1161/CIR.0000000000000509 . PMID   28455343.
  115. Abraham WT, Smith SA (February 2013). "Devices in the management of advanced, chronic heart failure". Nature Reviews. Cardiology. 10 (2): 98–110. doi:10.1038/nrcardio.2012.178. PMC   3753073 . PMID   23229137.
  116. Giallauria F, Vigorito C, Piepoli MF, Stewart Coats AJ (August 2014). "Effects of cardiac contractility modulation by non-excitatory electrical stimulation on exercise capacity and quality of life: an individual patient's data meta-analysis of randomized controlled trials". International Journal of Cardiology. 175 (2): 352–7. doi:10.1016/j.ijcard.2014.06.005. PMID   24975782.
  117. Borggrefe M, Burkhoff D (July 2012). "Clinical effects of cardiac contractility modulation (CCM) as a treatment for chronic heart failure". European Journal of Heart Failure. 14 (7): 703–12. doi: 10.1093/eurjhf/hfs078 . PMID   22696514. S2CID   10484257.
  118. Kuschyk J, Roeger S, Schneider R, Streitner F, Stach K, Rudic B, et al. (March 2015). "Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients". International Journal of Cardiology. 183 (183C): 76–81. doi:10.1016/j.ijcard.2014.12.178. PMID   25662055.
  119. Kuschyk J (2014). "Der Besondere Stellenwert der Kardialen Kontraktilitätsmodulation in der Devicetherapie". Herzmedizin. Archived from the original on 5 July 2015. Retrieved 6 June 2014.
  120. Clinical trial number NCT01381172 for "Evaluate Safety and Efficacy of the OPTIMIZER System in Subjects With Moderate-to-Severe Heart Failure: FIX-HF-5C (FIX-HF-5C)" at ClinicalTrials.gov
  121. "FDA Approves Optimizer Smart System for Heart Failure Patients". Diagnostic and Interventional Cardiology (DAIC). 21 March 2019. Archived from the original on 19 March 2023. Retrieved 25 June 2022.
  122. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. (October 2013). "2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines". Circulation. 128 (16): e240–327. doi: 10.1161/CIR.0b013e31829e8776 . PMID   23741058.
  123. Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, et al. (October 2013). "Cardiac-resynchronization therapy in heart failure with a narrow QRS complex" (PDF). The New England Journal of Medicine. 369 (15): 1395–405. doi:10.1056/NEJMoa1306687. PMID   23998714. S2CID   205095941. Archived (PDF) from the original on 28 July 2020. Retrieved 24 November 2018.
  124. Carrel T, Englberger L, Martinelli MV, Takala J, Boesch C, Sigurdadottir V, et al. (18 October 2012). "Continuous flow left ventricular assist devices: a valid option for heart failure patients". Swiss Medical Weekly . 142: w13701. doi: 10.4414/smw.2012.13701 . PMID   23135811.
  125. Lindenfeld J, Miller GG, Shakar SF, Zolty R, Lowes BD, Wolfel EE, et al. (December 2004). "Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs". Circulation. 110 (24): 3734–40. doi: 10.1161/01.cir.0000149745.83186.89 . PMID   15596559.
  126. 1 2 Kavalieratos D, Gelfman LP, Tycon LE, Riegel B, Bekelman DB, Ikejiani DZ, et al. (October 2017). "Palliative Care in Heart Failure: Rationale, Evidence, and Future Priorities". Journal of the American College of Cardiology. 70 (15): 1919–1930. doi:10.1016/j.jacc.2017.08.036. PMC   5731659 . PMID   28982506.
  127. 1 2 Adler ED, Goldfinger JZ, Kalman J, Park ME, Meier DE (December 2009). "Palliative care in the treatment of advanced heart failure". Circulation. 120 (25): 2597–606. doi: 10.1161/CIRCULATIONAHA.109.869123 . PMID   20026792.
  128. Kavalieratos D, Corbelli J, Zhang D, Dionne-Odom JN, Ernecoff NC, Hanmer J, et al. (November 2016). "Association Between Palliative Care and Patient and Caregiver Outcomes: A Systematic Review and Meta-analysis". JAMA. 316 (20): 2104–2114. doi:10.1001/jama.2016.16840. PMC   5226373 . PMID   27893131.
  129. Auble TE, Hsieh M, McCausland JB, Yealy DM (August 2007). "Comparison of four clinical prediction rules for estimating risk in heart failure". Annals of Emergency Medicine. 50 (2): 127–35, 135.e1–2. doi:10.1016/j.annemergmed.2007.02.017. PMID   17449141.
  130. Mehra MR, Kobashigawa J, Starling R, Russell S, Uber PA, Parameshwar J, et al. (September 2006). "Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates – 2006". The Journal of Heart and Lung Transplantation. 25 (9): 1024–42. doi:10.1016/j.healun.2006.06.008. PMID   16962464.
  131. Juenger J, Schellberg D, Kraemer S, Haunstetter A, Zugck C, Herzog W, et al. (March 2002). "Health related quality of life in patients with congestive heart failure: comparison with other chronic diseases and relation to functional variables". Heart. 87 (3): 235–41. doi:10.1136/heart.87.3.235. PMC   1767036 . PMID   11847161.
  132. Hobbs FD, Kenkre JE, Roalfe AK, Davis RC, Hare R, Davies MK (December 2002). "Impact of heart failure and left ventricular systolic dysfunction on quality of life: a cross-sectional study comparing common chronic cardiac and medical disorders and a representative adult population". European Heart Journal. 23 (23): 1867–76. doi:10.1053/euhj.2002.3255. PMID   12445536.
  133. Neubauer S (March 2007). "The failing heart--an engine out of fuel". The New England Journal of Medicine. 356 (11): 1140–51. doi:10.1056/NEJMra063052. PMID   17360992. S2CID   1481349.
  134. Witt BJ, Gami AS, Ballman KV, Brown RD, Meverden RA, Jacobsen SJ, et al. (August 2007). "The incidence of ischemic stroke in chronic heart failure: a meta-analysis". Journal of Cardiac Failure. 13 (6): 489–96. doi:10.1016/j.cardfail.2007.01.009. PMID   17675064.
  135. Tsao CW, et al. (February 2022). "Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association". Circulation. 145 (8): e153–e639. doi: 10.1161/CIR.0000000000001052 . PMID   35078371.
  136. Mann DL, Chakinala M (2012). "Chapter 234. Heart Failure and Cor Pulmonale". Harrison's principles of internal medicine: Chapter 234. Heart Failure and Cor Pulmonale (18th ed.). New York: McGraw-Hill. ISBN   978-0-07-174889-6. Archived from the original on 14 October 2013.
  137. Massie BM (2011). "Chapter 58: Heart Failure: Pathophysiology and Diagnosis". In Goldman L, Schafer AI (eds.). Goldman's Cecil Medicine (24th ed.). Philadelphia: Elsevier Saunders. pp. 295–302. ISBN   978-1-4377-2788-3.
  138. McMurray JJ, Pfeffer MA (2011). "Chapter 59: Heart Failure: Management and Diagnosis". In Goldman L, Schafer AI (eds.). Goldman's Cecil Medicine (24th ed.). Philadelphia: Elsevier Saunders. pp. 303–317. ISBN   978-1-4377-2788-3.
  139. Krumholz HM, Chen YT, Wang Y, Vaccarino V, Radford MJ, Horwitz RI (January 2000). "Predictors of readmission among elderly survivors of admission with heart failure". American Heart Journal. 139 (1 Pt 1): 72–7. doi:10.1016/S0002-8703(00)90311-9. PMID   10618565.
  140. Bui AL, Horwich TB, Fonarow GC (January 2011). "Epidemiology and risk profile of heart failure". Nature Reviews. Cardiology. 8 (1): 30–41. doi:10.1038/nrcardio.2010.165. PMC   3033496 . PMID   21060326.
  141. Pfuntner A, Wier LM, Stocks C (September 2013). "Most Frequent Conditions in U.S. Hospitals, 2011". HCUP Statistical Brief (162). Rockville, MD: Agency for Healthcare Research and Quality. Archived from the original on 4 March 2016. Retrieved 9 February 2016.
  142. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. (January 2013). "Heart disease and stroke statistics – 2013 update: a report from the American Heart Association". Circulation. 127 (1): e6–e245. doi:10.1161/cir.0b013e31828124ad. PMC   5408511 . PMID   23239837.
  143. "Heart disease facts". US Centers for Disease Control and Prevention. 15 May 2023. Archived from the original on 24 January 2021. Retrieved 8 July 2023.
  144. Elixhauser A, Steiner C. Readmissions to U.S. Hospitals by Diagnosis, 2010. HCUP Statistical Brief #153. Agency for Healthcare Research and Quality. April 2013. "Statistical Brief #153". Archived from the original on 18 April 2015. Retrieved 8 May 2013.
  145. Hines AL, Barrett ML, Jiang HJ, Steiner CA (April 2014). "Conditions With the Largest Number of Adult Hospital Readmissions by Payer, 2011". HCUP Statistical Brief (172). Rockville, MD: Agency for Healthcare Research and Quality. PMID   24901179. Archived from the original on 4 March 2016.
  146. 1 2 3 Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, et al. (February 2018). "Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals". Lancet. 391 (10120): 572–580. doi:10.1016/S0140-6736(17)32520-5. PMC   5814791 . PMID   29174292.
  147. 1 2 Strömberg A, Mårtensson J (April 2003). "Gender differences in patients with heart failure". European Journal of Cardiovascular Nursing. 2 (1): 7–18. doi: 10.1016/S1474-5151(03)00002-1 . PMID   14622644. S2CID   41171172.
  148. Solanki P (2015). "Heart Failure in South Asian Population". Management of Heart Failure. pp. 305–317. doi:10.1007/978-1-4471-6657-3_16. ISBN   978-1-4471-6656-6.
  149. Reyes EB, Ha JW, Firdaus I, Ghazi AM, Phrommintikul A, Sim D, et al. (November 2016). "Heart failure across Asia: Same healthcare burden but differences in organization of care". International Journal of Cardiology. 223: 163–167. doi: 10.1016/j.ijcard.2016.07.256 . hdl: 10722/232019 . PMID   27541646.
  150. Saba MM, Ventura HO, Saleh M, Mehra MR (2006). "Ancient Egyptian medicine and the concept of heart failure". J Card Fail. 12 (6): 416–21. doi:10.1016/j.cardfail.2006.03.001. PMID   16911907. Archived from the original on 9 August 2023. Retrieved 13 March 2021.
  151. 1 2 3 Nolan J (April 1993). "A historical review of heart failure". Scottish Medical Journal. 38 (2): 53–7. doi:10.1177/003693309303800208. PMID   8502981. S2CID   5216806.
  152. 1 2 Norn S, Kruse PR (2004). "[Cardiac glycosides: From ancient history through Withering's foxglove to endogeneous cardiac glycosides]". Dansk Medicinhistorisk Arbog: 119–32. PMID   15685783.
  153. 1 2 Hajar R (2019). "Congestive Heart Failure: A History". Heart Views. 20 (3): 129–132. doi: 10.4103/HEARTVIEWS.HEARTVIEWS_77_19 . PMC   6791096 . PMID   31620262.
  154. 1 2 Bestetti RB, Cardinalli-Neto A, Couto LB (April 2020). "The history of the evolution of the knowledge about the diagnosis and the pathogenetic aspects of heart failure: From the Egyptians to James Mackenzie". International Journal of Cardiology. 304: 109–115. doi:10.1016/j.ijcard.2019.12.050. PMID   31980269. S2CID   210890303.
  155. Jarcho S (August 1969). "An Eighteenth Century treatise on dropsy of the chest (Buchner, 1742)". Bulletin of the New York Academy of Medicine. 45 (8): 799–806. PMC   1750442 . PMID   4896254.
  156. Eknoyan G (June 1997). "A history of edema and its management". Kidney International. Supplement. 59: S118–26. PMID   9185118.
  157. 1 2 3 White PD (June 1957). "The evolution of our knowledge about the heart and its diseases since 1628". Circulation. 15 (6): 915–23. doi: 10.1161/01.cir.15.6.915 . PMID   13437417.
  158. Sequeira V, van der Velden J (December 2015). "Historical perspective on heart function: the Frank–Starling Law". Biophysical Reviews. 7 (4): 421–447. doi:10.1007/s12551-015-0184-4. PMC   5418489 . PMID   28510104.
  159. 1 2 Ventura HO, Mehra MR (May 2005). "Bloodletting as a cure for dropsy: heart failure down the ages". Journal of Cardiac Failure. 11 (4): 247–52. doi:10.1016/j.cardfail.2004.10.003. PMID   15880332.
  160. Eknoyan G (July 1996). "Historical note. On the contributions of Paracelsus to nephrology". Nephrology, Dialysis, Transplantation. 11 (7): 1388–1394. doi: 10.1093/ndt/11.7.1388 . PMID   8672051.
  161. 1 2 3 4 Ventura HO. "A Glimpse of Yesterday: Treatment of "Dropsy" (Slides with Transcript)". Medscape. Archived from the original on 30 September 2017. Retrieved 26 February 2021.
  162. Ventura HO (2006). "History of heart failure". Congestive Heart Failure. 12 (3): 178. doi: 10.1111/j.1527-5299.2005.04956.x . PMID   16760707.
  163. Lüderitz B (May 2011). "[On the history of heart failure]". Clinical Research in Cardiology Supplements. 6: 2–5. doi:10.1007/s11789-011-0026-2. PMID   22528171. S2CID   116245349.
  164. Swedberg K (June 1998). "History of Beta blockers in congestive heart failure". Heart. 79 (Suppl 2): S29-30. doi:10.1136/hrt.79.2008.29s. PMC   1766483 . PMID   18610472.
  165. Torio CM, Andrews RM. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. HCUP Statistical Brief #160. Agency for Healthcare Research and Quality, Rockville, MD. August 2013. "Statistical Brief #160". Archived from the original on 14 March 2017. Retrieved 1 May 2017.
  166. Stewart S, Jenkins A, Buchan S, McGuire A, Capewell S, McMurray JJ (June 2002). "The current cost of heart failure to the National Health Service in the UK". European Journal of Heart Failure. 4 (3): 361–71. doi:10.1016/S1388-9842(01)00198-2. PMID   12034163. S2CID   12765307.
  167. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. (January 2008). "Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee". Circulation. 117 (4): e25–146. doi: 10.1161/CIRCULATIONAHA.107.187998 . PMID   18086926.
  168. 1 2 Fisher SA, Doree C, Mathur A, Taggart DP, Martin-Rendon E (December 2016). "Stem cell therapy for chronic ischaemic heart disease and congestive heart failure". The Cochrane Database of Systematic Reviews. 2016 (12): CD007888. doi:10.1002/14651858.CD007888.pub3. PMC   6463978 . PMID   28012165.
  169. Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, et al. (April 2014). "Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis". BMJ. 348: g2688. doi:10.1136/bmj.g2688. PMC   4002982 . PMID   24778175.
  170. 1 2 Papait R, Serio S, Condorelli G (October 2020). "Role of the Epigenome in Heart Failure". Physiol Rev. 100 (4): 1753–1777. doi:10.1152/physrev.00037.2019. PMID   32326823.
  171. 1 2 Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J (2022). "The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling". Front Cardiovasc Med. 9: 952949. doi: 10.3389/fcvm.2022.952949 . PMC   9458904 . PMID   36093141.