Acute decompensated heart failure

Last updated
Heart failure
Pulmonaryedema09.JPG
Acute interstitial pulmonary edema. Note enlarged heart size, apical vascular redistribution ( circle ), and small bilateral pleural effusions ( arrow ).
Specialty Cardiology   OOjs UI icon edit-ltr-progressive.svg

Acute decompensated heart failure (ADHF) is a sudden worsening of the signs and symptoms of heart failure, which typically includes difficulty breathing (dyspnea), leg or feet swelling, and fatigue. [1] ADHF is a common and potentially serious cause of acute respiratory distress. The condition is caused by severe congestion of multiple organs by fluid that is inadequately circulated by the failing heart. An attack of decompensation can be caused by underlying medical illness, such as myocardial infarction, an abnormal heart rhythm, infection, or thyroid disease.

Contents

Acute Heart Failure

Heart failure or cardiovascular insufficiency can be acute without being decompensated from a chronic condition. In this case, the signs of congestion such as weight gain and edema will not yet have developed. This is commonly due to pump failure or cardiovascular insufficiency after myocardial infarction when a significant loss of cardiac function occurs. Such patients will, have shortness of breath due to poor tissue perfusion, tissue hypoxia and metabolic acidosis. [2]

Signs and symptoms

Cardiac symptoms of heart failure include chest pain/pressure and palpitations. Common noncardiac signs and symptoms of heart failure include loss of appetite, nausea, weight loss, bloating, fatigue, weakness, low urine output, waking up at night to urinate, and cerebral symptoms of varying severity, ranging from anxiety to memory impairment and confusion. [3]

Flash Pulmonary Edema

Flash Pulmonary Edema or Crash Pulmonary Edema is a clinical characterization of acute heart failure with a dramatic presentation. [4] It is an acute cardiac disease precipitated by cardiac events and usually associated with severe hypertension.

Causes

Chronic stable heart failure may easily decompensate. This most commonly results from an intercurrent illness (such as pneumonia), myocardial infarction (a heart attack), abnormal heart rhythms (such as atrial fibrillation), uncontrolled high blood pressure, or the person's failure to maintain a fluid restriction, diet, or medication. [5] Other well recognized precipitating factors include anemia and hyperthyroidism which place additional strain on the heart muscle. Excessive fluid or salt intake, and medication that causes fluid retention such as NSAIDs and thiazolidinediones, may also precipitate decompensation. [6]

Diagnosis

A man with congestive heart failure and marked jugular venous distension. External jugular vein marked by an arrow. Elevated JVP.JPG
A man with congestive heart failure and marked jugular venous distension. External jugular vein marked by an arrow.
Pitting edema during and after the application of pressure to the skin. Combinpedal.jpg
Pitting edema during and after the application of pressure to the skin.

A jugular venous distension is the most sensitive clinical sign for acute decompensation. [7]

Treatment

In acute decompensated heart failure, the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are adequate. Management consists of propping up the head of the patient, giving oxygen to correct hypoxemia, administering morphine, diuretics like furosemide, addition of an ACE inhibitor, use of nitrates and use of digoxin if indicated for the heart failure and if arrhythmic. [8]

Oxygen

Supplemental oxygen may be administered if blood levels of oxygen are low; the Heart Failure Society of America, however, has recommended that it not be used routinely. [8]

Medication

Initial therapy of acute decompensated heart failure usually includes some combination of a vasodilator such as nitroglycerin, a loop diuretic such as furosemide, and non-invasive positive pressure ventilation (NIPPV). [9]

A number of different medications are required for people who are experiencing heart failure. Common types of medications that are prescribed for heart failure patients include ACE inhibitors, vasodilators, beta blockers, aspirin, calcium channel blockers, and cholesterol lowering medications such as statins. Depending on the type of damage a patient has suffered and the underlying cause of the heart failure, any of these drug classes or a combination of them can be prescribed. Patients with heart pumping problems will use a different medication combination than those who are experiencing problems with the heart's ability to fill properly during diastole. Potentially dangerous drug interactions can occur when different drugs mix together and work against each other. [10]

Vasodilators

Nitrates such as nitroglycerin (glyceryl trinitrate) and isosorbide dinitrate are often used as part of the initial therapy for ADHF. [9]

Another option is nesiritide, although it should only be considered if conventional therapy has been ineffective or contraindicated as it is much more expensive than nitroglycerin and has not been shown to be of any greater benefit. [11]

A 2013 Cochrane review, compared nitrates and other pharmacological, non-pharmacological, and placebo interventions. [9] The review found no significant difference between the interventions in terms of symptom control or haemodynamic stability. [9]

The National Institutes for Health and Care Excellence (NICE) guidelines do not recommend routinely offering nitrates in acute heart failure. [12]

Diuretics

Heart failure is usually associated with a volume overloaded state. Therefore, those with evidence of fluid overload should be treated initially with intravenous loop diuretics. In the absence of symptomatic low blood pressure intravenous nitroglycerin is often used in addition to diuretic therapy to improve congestive symptoms. [8]

Volume status should still be adequately evaluated. Some heart failure patients on chronic diuretics can undergo excessive diuresis. In the case of diastolic dysfunction without systolic dysfunction, fluid resuscitation may, in fact, improve circulation by decreasing heart rate, which will allow the ventricles more time to fill. Even if the patient is edematous, fluid resuscitation may be the first line of treatment if the person's blood pressure is low. The person may, in fact, have too little fluid in their blood vessels, but if the low blood pressure is due to cardiogenic shock, the administration of additional fluid may worsen the heart failure and associated low blood pressure. If the person's circulatory volume is adequate but there is persistent evidence of inadequate end-organ perfusion, inotropes may be administered. In certain circumstances, a left ventricular assist device (LVAD) may be necessary.

Once the person is stabilized, attention can be turned to treating pulmonary edema to improve oxygenation. Intravenous furosemide is generally the first line. However, people on long-standing diuretic regimens can become tolerant, and dosages must be progressively increased. If high doses of furosemide are inadequate, boluses or continuous infusions of bumetanide may be preferred. These loop diuretics may be combined with thiazide diuretics such as oral metolazone or intravenous chlorothiazide for a synergistic effect. Intravenous preparations are physiologically preferred because of more predictable absorption due to intestinal edema, however, oral preparations can be significantly more cost effective. [13]

Others

ACE inhibitors and ARBs

The effectiveness and safety of ACE inhibitors and angiotensin receptor blockers (ARBs) acutely in ADHF have not been well studied, but are potentially harmful. A person should be stabilized before therapy with either of these medication classes is initiated. [14] Individuals with poor kidney perfusion are especially at risk for kidney impairment inherent with these medications. [15]

Beta-blockers

Beta-blockers are stopped or decreased in people with acutely decompensated heart failure and a low blood pressure. However, continuation of beta-blockers may be appropriate if the blood pressure is adequate. [16]

Inotropic agents

Inotropes are indicated if low blood pressure ( SBP < 90 mmHg ) is present.

The National Institutes for Health and Care Excellence (NICE) guidelines do not recommend routinely offering inotropes in acute heart failure. [12] However, they recommend it be considered in patients with ADHF and potentially reversible caradiogenic shock. [12]

Opioids

Opioids have traditionally been used in the treatment of the acute pulmonary edema that results from acute decompensated heart failure. A 2006 review, however, found little evidence to support this practice. [17]

The National Institutes for Health and Care Excellence (NICE) guidelines do not recommend routinely offering opioids in acute heart failure. [12]

Ventilation

Continuous positive airway pressure may be applied using a face mask; this has been shown to improve symptoms more quickly than oxygen therapy alone, [18] and has been shown to reduce the risk of death. [19] [20] Severe respiratory failure requires treatment with endotracheal intubation and mechanical ventilation.

Ultrafiltration

Ultrafiltration can be used to remove fluids in people with ADHF associated with kidney failure. Studies have found that it decreases health care utilization at 90 days. [21] One such method is aquapheresis ultra-filtration

A 2022 Cochrane review on the benefits, efficacy, and safety of ultrafiltration compared to diuretic therapy found that ultrafiltration probably reduces the incidence of heart-failure related hospitalisation in the long term. [22]

The National Institutes for Health and Care Excellence (NICE) guidelines do not recommend routinely offering ultrafiltration in acute heart failure. [12]

Surgery

In some cases, doctors recommend surgery to treat the underlying problem that led to heart failure. [23] Different procedures are available depending on the level of necessity and include coronary artery bypass surgery, heart valve repair or replacement, or heart transplantation. During these procedures, devices such as heart pumps, pacemakers, or defibrillators might be implanted. The treatment of heart disease is rapidly changing and thus new therapies for acute heart failure treatment are being introduced to save more lives from these massive attacks. [24]

Bypass surgery is performed by removing a vein from the arm or leg, or an artery from the chest and replacing the blocked artery in the heart. This allows the blood to flow more freely through the heart. Valve repair is where the valve that is causing heart failure is modified by removing excess valve tissues that cause them to close too tightly. In some cases, annuloplasty is required to replace the ring around the valves. If the repair of the valve is not possible, it is replaced by an artificial heart valve. The final step is heart replacement. When severe heart failure is present and medicines or other heart procedures are not effective, the diseased heart needs to be replaced.

Another common procedure used to treat heart failure patients is an angioplasty. Is a procedure used to improve the symptoms of coronary artery disease (CAD), reduce the damage to the heart muscle after a heart attack, and reduce the risk of death in some patients. [25]

A pacemaker is a small device that's placed in the chest or abdomen to help control abnormal heart rhythms. [26] They work by sending electric pulses to the heart to prompt it to beat at a rate that is considered to be normal and are used to treat patients with arrhythmias. They can be used to treat hearts that are classified as either a tachycardia that beats too fast, or a bradycardia that beats too slow.

See also

Related Research Articles

<span class="mw-page-title-main">Edema</span> Accumulation of excess fluid in tissue

Edema, also spelled oedema, and also known as fluid retention, dropsy and hydropsy, is the build-up of fluid in the body's tissue, a type of swelling. Most commonly, the legs or arms are affected. Symptoms may include skin that feels tight, the area feeling heavy, and joint stiffness. Other symptoms depend on the underlying cause.

<span class="mw-page-title-main">Respiratory failure</span> Inadequate gas exchange by the respiratory system

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases, and evidence of increased work of breathing. Respiratory failure causes an altered state of consciousness due to ischemia in the brain.

<span class="mw-page-title-main">Ascites</span> Abnormal build-up of fluid in the abdomen

Ascites is the abnormal build-up of fluid in the abdomen. Technically, it is more than 25 ml of fluid in the peritoneal cavity, although volumes greater than one liter may occur. Symptoms may include increased abdominal size, increased weight, abdominal discomfort, and shortness of breath. Complications can include spontaneous bacterial peritonitis.

<span class="mw-page-title-main">Heart failure</span> Failure of the heart to provide sufficient blood flow

Heart failure (HF), also known as congestive heart failure (CHF), is a syndrome caused by an impairment in the heart's ability to fill with and pump blood.

<span class="mw-page-title-main">Fluid replacement</span> Medical practice of replenishing bodily fluid

Fluid replacement or fluid resuscitation is the medical practice of replenishing bodily fluid lost through sweating, bleeding, fluid shifts or other pathologic processes. Fluids can be replaced with oral rehydration therapy (drinking), intravenous therapy, rectally such as with a Murphy drip, or by hypodermoclysis, the direct injection of fluid into the subcutaneous tissue. Fluids administered by the oral and hypodermic routes are absorbed more slowly than those given intravenously.

<span class="mw-page-title-main">Pulmonary edema</span> Fluid accumulation in the tissue and air spaces of the lungs

Pulmonary edema, also known as pulmonary congestion, is excessive fluid accumulation in the tissue or air spaces of the lungs. This leads to impaired gas exchange, most often leading to shortness of breath (dyspnea) which can progress to hypoxemia and respiratory failure. Pulmonary edema has multiple causes and is traditionally classified as cardiogenic or noncardiogenic.

<span class="mw-page-title-main">Furosemide</span> Loop diuretic medication

Furosemide, sold under the brand name Lasix among others, is a loop diuretic medication used to treat edema due to heart failure, liver scarring, or kidney disease. Furosemide may also be used for the treatment of high blood pressure. It can be taken intravenously or orally. When given intravenously, furosemide typically takes effect within five minutes; when taken orally, it typically metabolizes within an hour.

<span class="mw-page-title-main">Mitral regurgitation</span> Form of valvular heart disease

Mitral regurgitation (MR), also known as mitral insufficiency or mitral incompetence, is a form of valvular heart disease in which the mitral valve is insufficient and does not close properly when the heart pumps out blood. It is the abnormal leaking of blood backwards – regurgitation from the left ventricle, through the mitral valve, into the left atrium, when the left ventricle contracts. Mitral regurgitation is the most common form of valvular heart disease.

<span class="mw-page-title-main">Peripartum cardiomyopathy</span> Medical condition

Peripartum cardiomyopathy (PPCM) is a form of dilated cardiomyopathy that is defined as a deterioration in cardiac function presenting typically between the last month of pregnancy and up to six months postpartum. As with other forms of dilated cardiomyopathy, PPCM involves systolic dysfunction of the heart with a decrease of the left ventricular ejection fraction (EF) with associated congestive heart failure and an increased risk of atrial and ventricular arrhythmias, thromboembolism (blockage of a blood vessel by a blood clot), and even sudden cardiac death. In essence, the heart muscle cannot contract forcefully enough to pump adequate amounts of blood for the needs of the body's vital organs.

<span class="mw-page-title-main">Loop diuretic</span> Diuretics that act along the loop of Henle in the kidneys

Loop diuretics are pharmacological agents that primarily inhibit the Na-K-Cl cotransporter located on the luminal membrane of cells along the thick ascending limb of the loop of Henle. They are often used for the treatment of hypertension and edema secondary to congestive heart failure, liver cirrhosis, or chronic kidney disease. While thiazide diuretics are more effective in patients with normal kidney function, loop diuretics are more effective in patients with impaired kidney function.

<span class="mw-page-title-main">Cardiogenic shock</span> Shock due to heart dysfunction

Cardiogenic shock is a medical emergency resulting from inadequate blood flow to the body's organs due to the dysfunction of the heart. Signs of inadequate blood flow include low urine production, cool arms and legs, and decreased level of consciousness. People may also have a severely low blood pressure and heart rate.

<span class="mw-page-title-main">Pulmonary artery catheter</span> Catheter for insertion into a pulmonary artery

A pulmonary artery catheter (PAC), also known as a Swan-Ganz catheter or right heart catheter, is a balloon-tipped catheter that is inserted into a pulmonary artery in a procedure known as pulmonary artery catheterization or right heart catheterization. Pulmonary artery catheterization is a useful measure of the overall function of the heart particularly in those with complications from heart failure, heart attack, arrhythmias or pulmonary embolism. It is also a good measure for those needing intravenous fluid therapy, for instance post heart surgery, shock, and severe burns. The procedure can also be used to measure pressures in the heart chambers.

Cardiac asthma is the medical condition of intermittent wheezing, coughing, and shortness of breath that is associated with underlying congestive heart failure (CHF). Symptoms of cardiac asthma are related to the heart's inability to effectively and efficiently pump blood in a CHF patient. This can lead to accumulation of fluid in and around the lungs, disrupting the lung's ability to oxygenate blood.

<span class="mw-page-title-main">Hypervolemia</span> Medical condition

Hypervolemia, also known as fluid overload, is the medical condition where there is too much fluid in the blood. The opposite condition is hypovolemia, which is too little fluid volume in the blood. Fluid volume excess in the intravascular compartment occurs due to an increase in total body sodium content and a consequent increase in extracellular body water. The mechanism usually stems from compromised regulatory mechanisms for sodium handling as seen in congestive heart failure (CHF), kidney failure, and liver failure. It may also be caused by excessive intake of sodium from foods, intravenous (IV) solutions and blood transfusions, medications, or diagnostic contrast dyes. Treatment typically includes administration of diuretics and limit the intake of water, fluids, sodium, and salt.

<span class="mw-page-title-main">Torasemide</span> Diuretic medication

Torasemide, also known as torsemide, is a diuretic medication used to treat fluid overload due to heart failure, kidney disease, and liver disease. It is a less preferred treatment for high blood pressure. It is taken by mouth or by injection into a vein.

<span class="mw-page-title-main">Aquapheresis</span> Medical intervention

Aquapheresis is a medical technology designed to remove excess salt and water from the body safely, predictably, and effectively from patients with a condition called fluid overload. It removes the excess salt and water and helps to restore a patient's proper fluid balance, which is called euvolemia.

Obstructive shock is one of the four types of shock, caused by a physical obstruction in the flow of blood. Obstruction can occur at the level of the great vessels or the heart itself. Causes include pulmonary embolism, cardiac tamponade, and tension pneumothorax. These are all life-threatening. Symptoms may include shortness of breath, weakness, or altered mental status. Low blood pressure and tachycardia are often seen in shock. Other symptoms depend on the underlying cause.

<span class="mw-page-title-main">Transfusion-associated circulatory overload</span> Medical condition

In transfusion medicine, transfusion-associated circulatory overload is a transfusion reaction resulting in signs or symptoms of excess fluid in the circulatory system (hypervolemia) within 12 hours after transfusion. The symptoms of TACO can include shortness of breath (dyspnea), low blood oxygen levels (hypoxemia), leg swelling, high blood pressure (hypertension), and a high heart rate (tachycardia).

Management of heart failure requires a multimodal approach. It involves a combination of lifestyle modifications, medications, and possibly the use of devices or surgery. It may be noted that treatment can vary across continents and regions.

<span class="mw-page-title-main">Surgical shock</span> Physiologic state of shock related to surgery

Surgical shock is a physiologic state of shock which can be related to complications of surgery or the surgery itself. Shock is defined as insufficient perfusion or blood flow to organs and body tissue that causes organ and tissue dysfunction, and can be divided into different types depending on the cause and symptoms. A common type of surgical shock is hypovolemic shock, which is often caused by blood loss. Other types of shock include cardiogenic, obstructive and distributive. Failure to identify and treat the underlying cause of shock in any setting may lead to irreversible multiple organ damage, organ failure, and death.

References

  1. Allen LA, O'Connor CM (13 March 2007). "Management of acute decompensated heart failure". CMAJ. 176 (6): 797–805. doi:10.1503/cmaj.051620. PMC   1808524 . PMID   17353535.
  2. Neaverson, M. A. (1966-08-13). "Metabolic acidosis in acute myocardial infarction". British Medical Journal. 2 (5510): 383–385. doi:10.1136/bmj.2.5510.383. ISSN   0007-1447. PMC   1943592 . PMID   5917356.
  3. Heart Failure~clinical at eMedicine
  4. Rimoldi, Stefano F.; Yuzefpolskaya, Melana; Allemann, Yves; Messerli, Franz (November 2009). "Flash Pulmonary Edema". Progress in Cardiovascular Diseases. 52 (3): 249–259. doi:10.1016/j.pcad.2009.10.002. PMID   19917337.
  5. Fonarow GC, Abraham WT, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, et al. (April 2008). "Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF". Archives of Internal Medicine. 168 (8): 847–854. doi: 10.1001/archinte.168.8.847 . PMID   18443260.
  6. Nieminen MS, Böhm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G, et al. (February 2005). "Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology". European Heart Journal. 26 (4): 384–416. doi: 10.1093/eurheartj/ehi044 . hdl: 10400.16/493 . PMID   15681577.
  7. Torres M, Moayedi S (May 2007). "Evaluation of the acutely dyspneic elderly patient". Clin. Geriatr. Med. 23 (2): 307–25, vi. doi:10.1016/j.cger.2007.01.007. PMID   17462519.
  8. 1 2 3 Heart Failure Society Of America (February 2006). "Evaluation and management of patients with acute decompensated heart failure". J. Card. Fail. 12 (1): e86–e103. doi: 10.1016/j.cardfail.2005.11.017 . PMID   16500576.
  9. 1 2 3 4 Wakai A, McCabe A, Kidney R, Brooks SC, Seupaul RA, Diercks DB, et al. (Cochrane Heart Group) (August 2013). "Nitrates for acute heart failure syndromes". The Cochrane Database of Systematic Reviews. 2013 (8): CD005151. doi:10.1002/14651858.CD005151.pub2. PMC   8101690 . PMID   23922186.
  10. "Medications Commonly Used to Treat Heart Failure". American Heart Association. Retrieved 22 January 2010.
  11. O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. (July 2011). "Effect of nesiritide in patients with acute decompensated heart failure". The New England Journal of Medicine. 365 (1): 32–43. doi: 10.1056/NEJMoa1100171 . hdl: 10183/189579 . PMID   21732835.
  12. 1 2 3 4 5 "1 Recommendations | Acute heart failure: diagnosis and management | Guidance | NICE". www.nice.org.uk. 2014-10-08. Retrieved 2023-10-30.
  13. Lau BD, Pinto BL, Thiemann DR, Lehmann CU (November 2011). "Budget impact analysis of conversion from intravenous to oral medication when clinically eligible for oral intake". Clinical Therapeutics. 33 (11): 1792–1796. doi:10.1016/j.clinthera.2011.09.030. PMID   22001356.
  14. Gheorghiade M, Zannad F, Sopko G, Klein L, Piña IL, Konstam MA, et al. (December 2005). "Acute heart failure syndromes: current state and framework for future research". Circulation. 112 (25): 3958–3968. doi: 10.1161/CIRCULATIONAHA.105.590091 . PMID   16365214.
  15. Valika AA, Gheorghiade M (March 2013). "Ace inhibitor therapy for heart failure in patients with impaired renal function: a review of the literature". Heart Failure Reviews. 18 (2): 135–140. doi:10.1007/s10741-011-9295-6. PMID   22213014. S2CID   44617135.
  16. Jondeau G, Neuder Y, Eicher JC, Jourdain P, Fauveau E, Galinier M, et al. (September 2009). "B-CONVINCED: Beta-blocker CONtinuation Vs. INterruption in patients with Congestive heart failure hospitalizED for a decompensation episode". European Heart Journal. 30 (18): 2186–2192. doi: 10.1093/eurheartj/ehp323 . PMID   19717851.
  17. "Does the application of opiates, during an attack of Acute Cardiogenic Pulmonary Oedema, reduce patients' mortality and morbidity?". BestBets. Retrieved December 6, 2008.
  18. Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J (July 2008). "Noninvasive ventilation in acute cardiogenic pulmonary edema". The New England Journal of Medicine. 359 (2): 142–151. doi: 10.1056/NEJMoa0707992 . PMID   18614781.
  19. Peter JV, Moran JL, Phillips-Hughes J, Graham P, Bersten AD (April 2006). "Effect of non-invasive positive pressure ventilation (NIPPV) on mortality in patients with acute cardiogenic pulmonary oedema: a meta-analysis". Lancet. 367 (9517): 1155–1163. doi:10.1016/S0140-6736(06)68506-1. PMID   16616558. S2CID   21490309.
  20. Weng CL, Zhao YT, Liu QH, Fu CJ, Sun F, Ma YL, et al. (May 2010). "Meta-analysis: Noninvasive ventilation in acute cardiogenic pulmonary edema". Annals of Internal Medicine. 152 (9): 590–600. doi:10.7326/0003-4819-152-9-201005040-00009. PMID   20439577. S2CID   207535976.
  21. Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. (February 2007). "Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure". Journal of the American College of Cardiology. 49 (6): 675–683. doi: 10.1016/j.jacc.2006.07.073 . PMID   17291932.
  22. Srivastava M, Harrison N, Caetano AF, Tan AR, Law M, et al. (Cochrane Heart Group) (January 2022). "Ultrafiltration for acute heart failure". The Cochrane Database of Systematic Reviews. 1 (1): CD013593. doi:10.1002/14651858.CD013593.pub2. PMC   8781783 . PMID   35061249.
  23. "Treatments and drugs for Heart Failure". Mayo Clinic. Retrieved 22 January 2010.
  24. "Acute Heart Failures Definition And Management". Archived from the original on 15 January 2010. Retrieved 22 January 2010.
  25. "What Is Coronary Angioplasty". National Heart Lung and Blood Institute. Retrieved 22 January 2010.
  26. "What Is Coronary Angioplasty". National Heart Lung and Blood Institute. Retrieved 22 January 2010.