Pulseless electrical activity

Last updated
Pulseless electrical activity
Other namesElectromechanical dissociation
Pulseless electrical activity EKG.svg
A drawing of what a rhythm strip showing PEA could look like
Specialty Emergency Medicine, Cardiology
Symptoms Loss of Consciousness, Respiratory Arrest, Sudden death
Complications Death
Risk factors Certain drug overdoses, Heart attack, Chest trauma, Pulmonary Embolism, Hypoxia, Hypothermia, Hypokalemia, Hyperkalemia, Hypovolemia
Diagnostic method Electrocardiogram
Differential diagnosis Cardiac arrest
Treatment Cardiopulmonary Resuscitation
Medication Epinephrine
Prognosis Poor (2-5% outside of the hospital)
FrequencyIncidence out-of-hospital: 22% to 30% of cardiac arrest events Incidence in-hospital: 35% to 40% of cardiac arrest events

Pulseless electrical activity (PEA) is a form of cardiac arrest in which the electrocardiogram shows a heart rhythm that should produce a pulse, but does not. Pulseless electrical activity is found initially in about 20% of out-of-hospital cardiac arrests [1] and about 50% of in-hospital cardiac arrests. [2]

Contents

Under normal circumstances, electrical activation of muscle cells precedes mechanical contraction of the heart (known as electromechanical coupling). In PEA, there is electrical activity but insufficient cardiac output to generate a pulse and supply blood to the organs, whether the heart itself is failing to contract or otherwise. [3] While PEA is classified as a form of cardiac arrest, significant cardiac output may still be present, which may be determined and best visualized by bedside ultrasound (echocardiography).

Cardiopulmonary resuscitation (CPR) is the first treatment for PEA, while potential underlying causes are identified and treated. The medication epinephrine (aka adrenaline) may be administered. [3] Survival is about 20% if the event occurred while the patient was already in the hospital setting. [4]

Signs and symptoms

Pulseless electrical activity leads to a loss of cardiac output, and the blood supply to the brain is interrupted. As a result, PEA is usually noticed when a person loses consciousness and stops breathing spontaneously. This is confirmed by examining the airway for obstruction, observing the chest for respiratory movement, and feeling the pulse (usually at the carotid artery) for a period of 10 seconds. [3]

Causes

These possible causes are remembered as the 6 Hs and the 6 Ts. [5] [6] [7] See Hs and Ts

The possible mechanisms by which the above conditions can cause pulseless in PEA are the same as those recognized as producing circulatory shock states. These are (1) impairment of cardiac filling, (2) impaired pumping effectiveness of the heart, (3) circulatory obstruction and (4) pathological vasodilation causing loss of vascular resistance and excess capacitance. More than one mechanism may be involved in any given case.[ citation needed ]

Diagnosis

Pulseless electrical activity, it is possible to observe by invasive blood pressure (red) the transition from a normal mechanical activity of the heart, which progressively changes in rhythm and contractile quality to asystole, even in the presence of normal electrical activity (green), also confirmed by the pulse oximeter detection even if with artifacts (blue) Dissociazione elettromeccanica (PEA).svg
Pulseless electrical activity, it is possible to observe by invasive blood pressure (red) the transition from a normal mechanical activity of the heart, which progressively changes in rhythm and contractile quality to asystole, even in the presence of normal electrical activity (green), also confirmed by the pulse oximeter detection even if with artifacts (blue)

The absence of a pulse confirms a clinical diagnosis of cardiac arrest, but PEA can only be distinguished from other causes of cardiac arrest with a device capable of electrocardiography (ECG/EKG). In PEA, there is organised or semi-organised electrical activity in the heart as opposed to asystole (flatline) or to the disorganised electrical activity of either ventricular fibrillation or ventricular tachycardia. [3]

Treatment

Cardiac resuscitation guidelines (ACLS/BCLS) advise that cardiopulmonary resuscitation should be initiated promptly to maintain cardiac output until the PEA can be corrected. The approach in treatment of PEA is to treat the underlying cause, if known (e.g. relieving a tension pneumothorax). Where an underlying cause for PEA cannot be determined and/or reversed, the treatment of pulseless electrical activity is similar to that for asystole. [3] There is no evidence that external cardiac compression can increase cardiac output in any of the many scenarios of PEA, such as hemorrhage, in which impairment of cardiac filling is the underlying mechanism producing loss of a detectable pulse.[ citation needed ]

A priority in resuscitation is placement of an intravenous or intraosseous line for administration of medications. The mainstay of drug therapy for PEA is epinephrine (adrenaline) 1 mg every 3–5 minutes. Although previously the use of atropine was recommended in the treatment of PEA/asystole, this recommendation was withdrawn in 2010 by the American Heart Association due to lack of evidence for therapeutic benefit. [3] Epinephrine too has a limited evidence base, and it is recommended on the basis of its mechanism of action.[ citation needed ]

Sodium bicarbonate 1meq per kilogram may be considered in this rhythm as well, although there is little evidence to support this practice. Its routine use is not recommended for patients in this context, except in special situations (e.g. preexisting metabolic acidosis, hyperkalemia, tricyclic antidepressant overdose). [3]

All of these drugs should be administered along with appropriate CPR techniques. Defibrillators cannot be used to correct this rhythm, as the problem lies in the response of the myocardial tissue to electrical impulses.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Bradycardia</span> Heart rate below the normal range

Bradycardia, also called bradyarrhythmia, is a resting heart rate under 60 beats per minute (BPM). While bradycardia can result from various pathologic processes, it is commonly a physiologic response to cardiovascular conditioning or due to asymptomatic type 1 atrioventricular block.

<span class="mw-page-title-main">Cardiac arrest</span> Sudden failure of heart beat

Cardiac arrest is when the heart suddenly and unexpectedly stops beating. When the heart stops beating, blood cannot properly circulate around the body and the blood flow to the brain and other organs is decreased. When the brain does not receive enough blood, this can cause a person to lose consciousness and brain cells can start to die due to lack of oxygen. Coma and persistent vegetative state may result from cardiac arrest. Cardiac arrest is also identified by a lack of central pulses and abnormal or absent breathing.

<span class="mw-page-title-main">Cardiopulmonary resuscitation</span> Emergency procedure after sudden cardiac arrest

Cardiopulmonary resuscitation (CPR) is an emergency procedure consisting of chest compressions often combined with artificial ventilation, or mouth to mouth in an effort to manually preserve intact brain function until further measures are taken to restore spontaneous blood circulation and breathing in a person who is in cardiac arrest. It is recommended for those who are unresponsive with no breathing or abnormal breathing, for example, agonal respirations.

<span class="mw-page-title-main">Cardioversion</span> Conversion of a cardiac arrhythmia to a normal rhythm using an electrical shock or medications

Cardioversion is a medical procedure by which an abnormally fast heart rate (tachycardia) or other cardiac arrhythmia is converted to a normal rhythm using electricity or drugs.

<span class="mw-page-title-main">Advanced cardiac life support</span> Emergency medical care

Advanced cardiac life support, advanced cardiovascular life support (ACLS) refers to a set of clinical guidelines established by the American Heart Association (AHA) for the urgent and emergent treatment of life-threatening cardiovascular conditions that will cause or have caused cardiac arrest, using advanced medical procedures, medications, and techniques. ACLS expands on Basic Life Support (BLS) by adding recommendations on additional medication and advanced procedure use to the CPR guidelines that are fundamental and efficacious in BLS. ACLS is practiced by advanced medical providers including physicians, some nurses and paramedics; these providers are usually required to hold certifications in ACLS care.

<span class="mw-page-title-main">Defibrillation</span> Treatment for life-threatening cardiac arrhythmias

Defibrillation is a treatment for life-threatening cardiac arrhythmias, specifically ventricular fibrillation (V-Fib) and non-perfusing ventricular tachycardia (V-Tach). A defibrillator delivers a dose of electric current to the heart. Although not fully understood, this process depolarizes a large amount of the heart muscle, ending the arrhythmia. Subsequently, the body's natural pacemaker in the sinoatrial node of the heart is able to re-establish normal sinus rhythm. A heart which is in asystole (flatline) cannot be restarted by a defibrillator; it would be treated only by cardiopulmonary resuscitation (CPR) and medication, and then by cardioversion or defibrillation if it converts into a shockable rhythm.

<span class="mw-page-title-main">Ventricular fibrillation</span> Rapid quivering of the ventricles of the heart

Ventricular fibrillation is an abnormal heart rhythm in which the ventricles of the heart quiver. It is due to disorganized electrical activity. Ventricular fibrillation results in cardiac arrest with loss of consciousness and no pulse. This is followed by sudden cardiac death in the absence of treatment. Ventricular fibrillation is initially found in about 10% of people with cardiac arrest.

<span class="mw-page-title-main">Asystole</span> Medical condition of the heart

Asystole is the absence of ventricular contractions in the context of a lethal heart arrhythmia. Asystole is the most serious form of cardiac arrest and is usually irreversible. Also referred to as cardiac flatline, asystole is the state of total cessation of electrical activity from the heart, which means no tissue contraction from the heart muscle and therefore no blood flow to the rest of the body.

<span class="mw-page-title-main">Third-degree atrioventricular block</span> Medical condition

Third-degree atrioventricular block is a medical condition in which the electrical impulse generated in the sinoatrial node in the atrium of the heart can not propagate to the ventricles.

<span class="mw-page-title-main">Ventricular tachycardia</span> Abnormally fast rhythm of the hearts ventricles

Ventricular tachycardia is a cardiovascular disorder in which fast heart rate occurs in the ventricles of the heart. Although a few seconds of VT may not result in permanent problems, longer periods are dangerous; and multiple episodes over a short period of time are referred to as an electrical storm. Short periods may occur without symptoms, or present with lightheadedness, palpitations, shortness of breath, chest pain, and decreased level of consciousness. Ventricular tachycardia may lead to coma and persistent vegetative state due to lack of blood and oxygen to the brain. Ventricular tachycardia may result in ventricular fibrillation (VF) and turn into cardiac arrest. This conversion of the VT into VF is called the degeneration of the VT. It is found initially in about 7% of people in cardiac arrest.

Precordial thump is a medical procedure used in the treatment of ventricular fibrillation or pulseless ventricular tachycardia under certain conditions. The procedure has a very low success rate, but may be used in those with witnessed, monitored onset of one of the "shockable" cardiac rhythms if a defibrillator is not immediately available. It should not delay cardiopulmonary resuscitation (CPR) and defibrillation, nor should it be used in those with unwitnessed out-of-hospital cardiac arrest.

<span class="mw-page-title-main">Advanced life support</span> Life-saving protocols

Advanced Life Support (ALS) is a set of life saving protocols and skills that extend basic life support to further support the circulation and provide an open airway and adequate ventilation (breathing).

A flatline is an electrical time sequence measurement that shows no activity and therefore, when represented, shows a flat line instead of a moving one. It almost always refers to either a flatlined electrocardiogram, where the heart shows no electrical activity (asystole), or to a flat electroencephalogram, in which the brain shows no electrical activity. Both of these specific cases are involved in various definitions of death.

<span class="mw-page-title-main">ABC (medicine)</span> Mnemonic for airway, breathing, and circulation

ABC and its variations are initialism mnemonics for essential steps used by both medical professionals and lay persons when dealing with a patient. In its original form it stands for Airway, Breathing, and Circulation. The protocol was originally developed as a memory aid for rescuers performing cardiopulmonary resuscitation, and the most widely known use of the initialism is in the care of the unconscious or unresponsive patient, although it is also used as a reminder of the priorities for assessment and treatment of patients in many acute medical and trauma situations, from first-aid to hospital medical treatment. Airway, breathing, and circulation are all vital for life, and each is required, in that order, for the next to be effective: a viable Airway is necessary for Breathing to provide oxygenated blood for Circulation. Since its development, the mnemonic has been extended and modified to fit the different areas in which it is used, with different versions changing the meaning of letters or adding other letters.

Pediatric advanced life support (PALS) is a course offered by the American Heart Association (AHA) for health care providers who take care of children and infants in the emergency room, critical care and intensive care units in the hospital, and out of hospital. The course teaches healthcare providers how to assess injured and sick children and recognize and treat respiratory distress/failure, shock, cardiac arrest, and arrhythmias.

The following outline is provided as an overview of and topical guide to cardiology, the branch of medicine dealing with disorders of the human heart. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology. Physicians who specialize in cardiology are called cardiologists.

The Hs and Ts is a mnemonic used to aid in remembering the possible reversible causes of cardiac arrest. A variety of disease can lead to a cardiac arrest; however, they usually boil down to one or more of the "Hs and Ts".

<span class="mw-page-title-main">Arrhythmia</span> Group of medical conditions characterized by irregular heartbeat

Arrhythmias, also known as cardiac arrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. Essentially, this is anything but normal sinus rhythm. A resting heart rate that is too fast – above 100 beats per minute in adults – is called tachycardia, and a resting heart rate that is too slow – below 60 beats per minute – is called bradycardia. Some types of arrhythmias have no symptoms. Symptoms, when present, may include palpitations or feeling a pause between heartbeats. In more serious cases, there may be lightheadedness, passing out, shortness of breath, chest pain, or decreased level of consciousness. While most cases of arrhythmia are not serious, some predispose a person to complications such as stroke or heart failure. Others may result in sudden death.

Return of spontaneous circulation (ROSC) is the resumption of a sustained heart rhythm that perfuses the body after cardiac arrest. It is commonly associated with significant respiratory effort. Signs of return of spontaneous circulation include breathing, coughing, or movement and a palpable pulse or a measurable blood pressure. Someone is considered to have sustained return of spontaneous circulation when circulation persists and cardiopulmonary resuscitation has ceased for at least 20 consecutive minutes.

<span class="mw-page-title-main">Rearrest</span>

Rearrest is a phenomenon that involves the resumption of a lethal cardiac dysrhythmia after successful return of spontaneous circulation (ROSC) has been achieved during the course of resuscitation. Survival to hospital discharge rates are as low as 7% for cardiac arrest in general and although treatable, rearrest may worsen these survival chances. Rearrest commonly occurs in the out-of-hospital setting under the treatment of health care providers.

References

  1. Bergström, Mattias; Schmidbauer, Simon; Herlitz, Johan; Rawshani, Araz; Friberg, Hans (December 2018). "Pulseless electrical activity is associated with improved survival in out-of-hospital cardiac arrest with initial non-shockable rhythm". Resuscitation. 133: 147–152. doi:10.1016/j.resuscitation.2018.10.018. ISSN   1873-1570. PMID   30352246. S2CID   53025153.
  2. Norvik, A.; Unneland, E.; Bergum, D.; Buckler, D. G.; Bhardwaj, A.; Eftestøl, T.; Aramendi, E.; Nordseth, T.; Abella, B. S.; Kvaløy, J. T.; Skogvoll, E. (2022-07-01). "Pulseless electrical activity in in-hospital cardiac arrest – A crossroad for decisions". Resuscitation. 176: 117–124. doi:10.1016/j.resuscitation.2022.04.024. hdl: 10810/57896 . ISSN   0300-9572. PMID   35490937.
  3. 1 2 3 4 5 6 7 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care (November 2010). "Part 8: Adult Advanced Cardiovascular Life Support". Circulation. 122 (18 Suppl): S729 –S767. doi: 10.1161/CIRCULATIONAHA.110.970988 . PMID   20956224.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  4. Baldzizhar, A; Manuylova, E; Marchenko, R; Kryvalap, Y; Carey, MG (September 2016). "Ventricular Tachycardias: Characteristics and Management". Critical Care Nursing Clinics of North America. 28 (3): 317–29. doi:10.1016/j.cnc.2016.04.004. PMID   27484660.
  5. Mazur, Glen (2003). Acls: Principles And Practice. [Dallas, TX]: Amer Heart Assn. pp. 71–87. ISBN   0-87493-341-2.
  6. Barnes, Thomas Garden; Cummins, Richard O.; Field, John; Hazinski, Mary Fran (2003). ACLS for experienced providers . [Dallas, TX]: American Heart Association. pp.  3–5. ISBN   0-87493-424-9.
  7. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care (December 2005). "Part 7.2: Management of Cardiac Arrest". Circulation. 112 (24 Suppl): IV 58–66. doi: 10.1161/CIRCULATIONAHA.105.166557 .{{cite journal}}: CS1 maint: numeric names: authors list (link)