Cardiac rehabilitation

Last updated

Cardiac rehabilitation (CR) is defined by the World Health Organization (WHO) as "the sum of activity and interventions required to ensure the best possible physical, mental, and social conditions so that patients with chronic or post-acute cardiovascular disease may, by their own efforts, preserve or resume their proper place in society and lead an active life". [1] CR is a comprehensive model of care delivering established core components, including structured exercise, patient education, psychosocial counselling, risk factor reduction and behaviour modification, with a goal of optimizing patient's quality of life and reducing the risk of future heart problems. [2] [3]

Contents

CR is delivered by a multi-disciplinary team, often headed by a physician such as a cardiologist. [4] Nurses support patients in reducing medical risk factors such as high blood pressure, high cholesterol and diabetes. Physiotherapists or other exercise professionals develop an individualized and structured exercise plan, including resistance training. A dietitian helps create a healthy eating plan. A social worker or psychologist may help patients to alleviate stress and address any identified psychological conditions; for tobacco users, they can offer counseling or recommend other proven treatments to support patients in their efforts to quit. Support for return-to-work can also be provided. CR programs are patient-centered.

Based on the benefits summarized below, CR programs are recommended by the American Heart Association / American College of Cardiology [5] and the European Society of Cardiology, [6] among other associations. [7] [8] Patients typically enter CR in the weeks following an acute coronary event such as a myocardial infarction (heart attack), with a diagnosis of heart failure, or following percutaneous coronary intervention (such as coronary stent placement), coronary artery bypass surgery, a valve procedure, or insertion of a rhythm device (e.g., pacemaker, implantable cardioverter defibrillator). [9]

Cardiac rehabilitation setting

CR services can be provided in hospital, in an outpatient setting such as a community center, or remotely at home using the phone and other technologies. [3] Hybrid programs are also increasingly being offered. [10] [11]

Cardiac rehabilitation phases

Inpatient program (phase I)

Engaging in CR before leaving the hospital can hasten patient’s recovery, as well as facilitate a smoother return to activities of daily living and roles once they return home. Many patients express anxiety about their recovery, especially after a severe illness or surgery, so Phase I CR provides an opportunity for patients to test their abilities in a safe, supervised setting.

Where available, patients receiving CR in the hospital after surgery are usually able to begin within a day or two. First steps include simple motion exercises that can be done sitting down, such as lifting the arms. Heart rate and blood oxygen levels are closely monitored by a therapist as the patient begins to walk, or exercise using a stationary bicycle. The therapist ensures that the level of aerobic and strength training are appropriate for the patient’s current status, and gradually progresses their therapeutic exercises. [12]

Outpatient program (phase II)

In order to participate in an outpatient program, the patient generally must first obtain a physician's referral. [13] It is recommended patients begin outpatient CR within 2–7 days following a percutaneous intervention, and 46 weeks after cardiac surgery. [14] [15] [16] This period is often very difficult for patients due to fears of over-exertion or a recurrence of heart issues. [17] [15] Shorter time to start is associated with better outcomes. [18]

Participation typically begins with an intake evaluation that includes measurement of cardiac risk factors such as lipids, blood pressure, body composition, depression / anxiety, and tobacco use. [3] A functional capacity test is usually performed both to determine if exercise is safe and to support development of a customized exercise program. [13]

Risk factors are addressed and patients goals are established; a "case-manager" who may be a cardiac-trained registered nurse, physiotherapist, or an exercise physiologist works to help patients achieve their targets. During exercise, the patient's heart rate and blood pressure may be monitored to check the intensity of activity. [13]

The duration of CR varies from program to program, and can range from six weeks to several years. Globally, a median of 24 sessions are offered, [19] and it is well-established that the more the better. [20]

After CR is finished, there are long-term maintenance programs (phase III) available to interested patients, [21] as benefits are optimized with long-term adherence. Unfortunately however, patients generally have to pay out-of-pocket for these services.

Under-use of cardiac rehabilitation

CR is significantly under-used globally. [22] Rates vary widely. [23]

Under-use is caused by multi-level factors; a recent review is available. [24] At the health system level, this includes lack of available programs. [25] At the provider level, low referral rates are a major barrier. [26] [27] At the patient level, factors such as lack of awareness, transportation, distance, cost, competing responsibilities, and other health conditions are responsible, [28] but most can be mitigated. [29] Women, [30] ethnocultural minorities, [31] [32] older patients, [33] those of lower socio-economic status, with comorbidities, and living in rural areas [34] are less likely to access CR, despite the fact that these patients often need it most. [35] Cardiac patients can assess their CR barriers here, and receive suggestions on how to overcome them: https://globalcardiacrehab.com/For-Patients.

Strategies are now established on how we can mitigate these barriers to CR use. [36] [37] It is important for inpatient units treating cardiac patients to institute automatic/systematic or electronic referral to CR (see: https://www.ahrq.gov/takeheart/index.html). [38] It is also key for healthcare providers to promote CR to patients at the bedside. [39] The National Institute for Health and Care Excellence offer helpful recommendations on encouraging patients to attend CR.

Training more healthcare professionals to deliver CR can also help. [40] CR programs can also join a registry to assess and improve their utilization—among other quality indicators. [41] [42] Offering programs tailored to under-served groups such as women may also facilitate program participation. [43] [44] [45]

Benefits

Participation in CR may be associated with many benefits. [46] For acute coronary syndrome patients, CR reduces cardiovascular mortality by 25% and readmission rates by 20%. [47] [48] [ needs update ] The potential benefit in all-cause mortality is not as clear, however there is some supportive evidence. [49]

CR is associated with improved quality of life, improved psychosocial well-being, and functional capacity, [50] and is cost-effective. [51] In low and middle-income countries, there is some evidence that CR is effective in improving functional capacity, risk factors and quality of life as well. [52]

There appears to be no difference in outcomes between supervised and home-based CR programs, and both cost about the same. [53] Home-based CR is generally safe. [54] Home-based programs with technology are similarly shown to be effective. [55] [56] [57]

There are specific reviews on benefits of CR in patients with specific health conditions such as valve issues, [58] atrial fibrillation, [59] heart transplant recipients, [60] and heart failure. [61]

Cardiac rehabilitation societies

CR professionals work together in many countries to optimize service delivery and increase awareness of CR. [62] The International Council of Cardiovascular Prevention and Rehabilitation (ICCPR), a member of the World Heart Federation, is composed of formally-named Board members of CR societies globally. Through cooperation across most CR-related associations, [63] ICCPR seeks to promote CR in low-resource settings, [64] among other aims outlined in their Charter. [65]

Related Research Articles

<span class="mw-page-title-main">Cardiology</span> Branch of medicine dealing with the heart

Cardiology is the study of the heart. Cardiology is a branch of medicine that deals with disorders of the heart and the cardiovascular system. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease, and electrophysiology. Physicians who specialize in this field of medicine are called cardiologists, a sub-specialty of internal medicine. Pediatric cardiologists are pediatricians who specialize in cardiology. Physicians who specialize in cardiac surgery are called cardiothoracic surgeons or cardiac surgeons, a specialty of general surgery.

<span class="mw-page-title-main">Coronary artery disease</span> Reduction of blood flow to the heart

Coronary artery disease (CAD), also called coronary heart disease (CHD), ischemic heart disease (IHD), myocardial ischemia, or simply heart disease, involves the reduction of blood flow to the cardiac muscle due to build-up of atherosclerotic plaque in the arteries of the heart. It is the most common of the cardiovascular diseases. Types include stable angina, unstable angina, and myocardial infarction.

<span class="mw-page-title-main">Cardiac arrest</span> Sudden failure of heart beat

Cardiac arrest, also known as sudden cardiac arrest, is when the heart suddenly and unexpectedly stops beating. As a result, blood cannot properly circulate around the body and there is diminished blood flow to the brain and other organs. When the brain does not receive enough blood, this can cause a person to lose consciousness. Coma and persistent vegetative state may result from cardiac arrest. Cardiac arrest is also identified by a lack of central pulses and abnormal or absent breathing.

<span class="mw-page-title-main">Angina</span> Chest discomfort from heart muscles

Angina, also known as angina pectoris, is chest pain or pressure, usually caused by insufficient blood flow to the heart muscle (myocardium). It is most commonly a symptom of coronary artery disease.

<span class="mw-page-title-main">Angioplasty</span> Procedure to widen narrow arteries or veins

Angioplasty, also known as balloon angioplasty and percutaneous transluminal angioplasty (PTA), is a minimally invasive endovascular procedure used to widen narrowed or obstructed arteries or veins, typically to treat arterial atherosclerosis.

<span class="mw-page-title-main">Statin</span> Class of drugs to lower cholesterol

Statins are a class of medications that reduce illness and mortality in people who are at high risk of cardiovascular disease. They are the most commonly prescribed cholesterol-lowering drugs.

<span class="mw-page-title-main">Implantable cardioverter-defibrillator</span> Medical device

An implantable cardioverter-defibrillator (ICD) or automated implantable cardioverter defibrillator (AICD) is a device implantable inside the body, able to perform defibrillation, and depending on the type, cardioversion and pacing of the heart. The ICD is the first-line treatment and prophylactic therapy for patients at risk for sudden cardiac death due to ventricular fibrillation and ventricular tachycardia.

<span class="mw-page-title-main">Cardiovascular disease</span> Class of diseases that involve the heart or blood vessels

Cardiovascular disease (CVD) is any disease involving the heart or blood vessels. CVDs constitute a class of diseases that includes: coronary artery diseases, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, arrhythmia, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis.

<span class="mw-page-title-main">Atorvastatin</span> Cholesterol-lowering medication

Atorvastatin is a statin medication used to prevent cardiovascular disease in those at high risk and to treat abnormal lipid levels. For the prevention of cardiovascular disease, statins are a first-line treatment. It is taken by mouth.

<span class="mw-page-title-main">University of Ottawa Heart Institute</span> Hospital in Ottawa, Ontario

The University of Ottawa Heart Institute (UOHI) (French: Institut de cardiologie de l'Université d'Ottawa ) is Canada's largest cardiovascular health centre. It is located in Ottawa, Ontario, Canada. It began as a department in The Ottawa Hospital, and since has evolved into Canada's only complete cardiac centre, encompassing prevention, diagnosis, treatment, rehabilitation, research, and education.

<span class="mw-page-title-main">Acute coronary syndrome</span> Medical condition

Acute coronary syndrome (ACS) is a syndrome due to decreased blood flow in the coronary arteries such that part of the heart muscle is unable to function properly or dies. The most common symptom is centrally located pressure-like chest pain, often radiating to the left shoulder or angle of the jaw, and associated with nausea and sweating. Many people with acute coronary syndromes present with symptoms other than chest pain, particularly women, older people, and people with diabetes mellitus.

<span class="mw-page-title-main">External counterpulsation</span>

External counterpulsation therapy (ECP) is a procedure that may be performed on individuals with angina, heart failure, or cardiomyopathy.

P2Y<sub>12</sub> Protein-coding gene in the species Homo sapiens

P2Y12 is a chemoreceptor for adenosine diphosphate (ADP) that belongs to the Gi class of a group of G protein-coupled (GPCR) purinergic receptors. This P2Y receptor family has several receptor subtypes with different pharmacological selectivity, which overlaps in some cases, for various adenosine and uridine nucleotides. The P2Y12 receptor is involved in platelet aggregation and is thus a biological target for the treatment of thromboembolisms and other clotting disorders. Two transcript variants encoding the same isoform have been identified for this gene.

<span class="mw-page-title-main">Troponin I</span> Muscle protein

Troponin I is a cardiac and skeletal muscle protein family. It is a part of the troponin protein complex, where it binds to actin in thin myofilaments to hold the actin-tropomyosin complex in place. Troponin I prevents myosin from binding to actin in relaxed muscle. When calcium binds to the troponin C, it causes conformational changes which lead to dislocation of troponin I. Afterwards, tropomyosin leaves the binding site for myosin on actin leading to contraction of muscle. The letter I is given due to its inhibitory character. It is a useful marker in the laboratory diagnosis of heart attack. It occurs in different plasma concentration but the same circumstances as troponin T - either test can be performed for confirmation of cardiac muscle damage and laboratories usually offer one test or the other.

<span class="mw-page-title-main">Ticagrelor</span> Coronary medication

Ticagrelor, sold under the brand name Brilinta among others, is a medication used for the prevention of stroke, heart attack and other events in people with acute coronary syndrome, meaning problems with blood supply in the coronary arteries. It acts as a platelet aggregation inhibitor by antagonising the P2Y12 receptor. The drug is produced by AstraZeneca.

<span class="mw-page-title-main">Coronary ischemia</span> Medical condition

Coronary ischemia, myocardial ischemia, or cardiac ischemia, is a medical term for abnormally reduced blood flow in the coronary circulation through the coronary arteries. Coronary ischemia is linked to heart disease, and heart attacks. Coronary arteries deliver oxygen-rich blood to the heart muscle. Reduced blood flow to the heart associated with coronary ischemia can result in inadequate oxygen supply to the heart muscle. When oxygen supply to the heart is unable to keep up with oxygen demand from the muscle, the result is the characteristic symptoms of coronary ischemia, the most common of which is chest pain. Chest pain due to coronary ischemia commonly radiates to the arm or neck. Certain individuals such as women, diabetics, and the elderly may present with more varied symptoms. If blood flow through the coronary arteries is stopped completely, cardiac muscle cells may die, known as a myocardial infarction, or heart attack.

<span class="mw-page-title-main">Myocardial infarction</span> Interruption of cardiac blood supply

A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops in one of the coronary arteries of the heart, causing infarction to the heart muscle. The most common symptom is retrosternal chest pain or discomfort that classically radiates to the left shoulder, arm, or jaw. The pain may occasionally feel like heartburn.

<span class="mw-page-title-main">Atrial fibrillation</span> Irregular beating of the atria of the heart

Atrial fibrillation is an abnormal heart rhythm (arrhythmia) characterized by rapid and irregular beating of the atrial chambers of the heart. It often begins as short periods of abnormal beating, which become longer or continuous over time. It may also start as other forms of arrhythmia such as atrial flutter that then transform into AF.

A diagnosis of myocardial infarction is created by integrating the history of the presenting illness and physical examination with electrocardiogram findings and cardiac markers. A coronary angiogram allows visualization of narrowings or obstructions on the heart vessels, and therapeutic measures can follow immediately. At autopsy, a pathologist can diagnose a myocardial infarction based on anatomopathological findings.

Major adverse cardiovascular events is a composite endpoint frequently used in cardiovascular research. Despite widespread use of the term in clinical trials, the definitions of MACE can differ, which makes comparison of similar studies difficult.

References

  1. WHO Expert Committee on Rehabilitation after Cardiovascular Diseases, with Special Emphasis on Developing Countries. Rehabilitation after cardiovascular diseases, with special emphsis on developing countries : report of a WHO expert committee. Geneva. ISBN   9241208317. OCLC   28401958.
  2. Cowie A, Buckley J, Doherty P, Furze G, Hayward J, Hinton S, et al. (April 2019). "Standards and core components for cardiovascular disease prevention and rehabilitation". Heart. 105 (7): 510–515. doi:10.1136/heartjnl-2018-314206. PMC   6580752 . PMID   30700518.
  3. 1 2 3 Grace SL, Turk-Adawi KI, Contractor A, Atrey A, Campbell N, Derman W, et al. (September 2016). "Cardiac rehabilitation delivery model for low-resource settings". Heart. 102 (18): 1449–1455. doi:10.1136/heartjnl-2015-309209. PMC   5013107 . PMID   27181874.
  4. Supervia M, Turk-Adawi K, Lopez-Jimenez F, Pesah E, Ding R, Britto RR, et al. (August 2019). "Nature of Cardiac Rehabilitation Around the Globe". eClinicalMedicine. 13: 46–56. doi:10.1016/j.eclinm.2019.06.006. PMC   6733999 . PMID   31517262.
  5. Smith SC, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, et al. (November 2011). "AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients with Coronary and other Atherosclerotic Vascular Disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation". Circulation. 124 (22): 2458–2473. doi: 10.1161/CIR.0b013e318235eb4d . PMID   22052934.
  6. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. (August 2016). "2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR)". European Heart Journal. 37 (29): 2315–2381. doi:10.1093/eurheartj/ehw106. PMC   4986030 . PMID   27222591.
  7. Guha S, Sethi R, Ray S, Bahl VK, Shanmugasundaram S, Kerkar P, et al. (April 2017). "Cardiological Society of India: Position statement for the management of ST elevation myocardial infarction in India". Indian Heart Journal. 69 (Suppl 1): S63–S97. doi: 10.1016/j.ihj.2017.03.006 . PMC   5388060 . PMID   28400042.
  8. "Quality statement 7 (developmental): Options for cardiac rehabilitation | Chronic heart failure in adults | Quality standards". www.nice.org.uk. Retrieved 2022-09-06.
  9. Grace SL, Turk-Adawi KI, Contractor A, Atrey A, Campbell NR, Derman W, et al. (2016-11-01). "Cardiac Rehabilitation Delivery Model for Low-Resource Settings: An International Council of Cardiovascular Prevention and Rehabilitation Consensus Statement" (PDF). Progress in Cardiovascular Diseases. Controversies in Hypertension. 59 (3): 303–322. doi:10.1016/j.pcad.2016.08.004. PMID   27542575.
  10. Keteyian SJ, Ades PA, Beatty AL, Gavic-Ott A, Hines S, Lui K, et al. (January 2022). "A Review of the Design and Implementation of a Hybrid Cardiac Rehabilitation Program: AN EXPANDING OPPORTUNITY FOR OPTIMIZING CARDIOVASCULAR CARE". Journal of Cardiopulmonary Rehabilitation and Prevention. 42 (1): 1–9. doi:10.1097/HCR.0000000000000634. PMID   34433760. S2CID   237306143.
  11. Heindl B, Ramirez L, Joseph L, Clarkson S, Thomas R, Bittner V (2022-01-01). "Hybrid cardiac rehabilitation - The state of the science and the way forward". Progress in Cardiovascular Diseases. 70: 175–182. doi:10.1016/j.pcad.2021.12.004. PMID   34958846. S2CID   245480348.
  12. Wang TJ, Chau B, Lui M, Lam GT, Lin N, Humbert S (September 2020). "Physical Medicine and Rehabilitation and Pulmonary Rehabilitation for COVID-19". American Journal of Physical Medicine & Rehabilitation. 99 (9): 769–774. doi:10.1097/PHM.0000000000001505. PMC   7315835 . PMID   32541352.
  13. 1 2 3 Supervia M, Turk-Adawi K, Lopez-Jimenez F, Pesah E, Ding R, Britto RR, et al. (August 2019). "Nature of Cardiac Rehabilitation Around the Globe". eClinicalMedicine. 13: 46–56. doi: 10.1016/j.eclinm.2019.06.006 . PMC   6733999 . PMID   31517262.
  14. Zhang Y, Cao H, Jiang P, Tang H (February 2018). "Cardiac rehabilitation in acute myocardial infarction patients after percutaneous coronary intervention: A community-based study". Medicine. 97 (8): e9785. doi:10.1097/MD.0000000000009785. PMC   5841979 . PMID   29465559.
  15. 1 2 Shajrawi A, Granat M, Jones I, Astin F (November 2020). "Physical Activity and Cardiac Self-Efficacy Levels During Early Recovery After Acute Myocardial Infarction: A Jordanian Study". The Journal of Nursing Research. 29 (1): e131. doi:10.1097/JNR.0000000000000408. PMC   7808357 . PMID   33136697.
  16. Dafoe W, Arthur H, Stokes H, Morrin L, Beaton L (September 2006). "Universal access: but when? Treating the right patient at the right time: access to cardiac rehabilitation". The Canadian Journal of Cardiology. 22 (11): 905–911. doi:10.1016/s0828-282x(06)70309-9. PMC   2570237 . PMID   16971975.
  17. Astin F, Closs SJ, McLenachan J, Hunter S, Priestley C (January 2009). "Primary angioplasty for heart attack: mismatch between expectations and reality?". Journal of Advanced Nursing. 65 (1): 72–83. doi:10.1111/j.1365-2648.2008.04836.x. PMID   19032516.
  18. "Cardiac rehabilitation wait times and relation to patient outcomes - European Journal of Physical and Rehabilitation Medicine 2015 June;51(3):301-9". www.minervamedica.it. Retrieved 2023-04-05.
  19. Chaves G, Turk-Adawi K, Supervia M, Santiago de Araújo Pio C, Abu-Jeish AH, Mamataz T, et al. (January 2020). "Cardiac Rehabilitation Dose Around the World: Variation and Correlates". Circulation: Cardiovascular Quality and Outcomes. 13 (1): e005453. doi: 10.1161/CIRCOUTCOMES.119.005453 . PMID   31918580. S2CID   210133397.
  20. Santiago de Araújo Pio C, Marzolini S, Pakosh M, Grace SL (November 2017). "Effect of Cardiac Rehabilitation Dose on Mortality and Morbidity: A Systematic Review and Meta-regression Analysis". Mayo Clinic Proceedings. 92 (11): 1644–1659. doi:10.1016/j.mayocp.2017.07.019. hdl: 10315/38072 . PMID   29101934. S2CID   40193168.
  21. Chowdhury M, Heald FA, Sanchez-Delgado JC, Pakosh M, Jacome-Hortua AM, Grace SL (July 2021). "The effects of maintenance cardiac rehabilitation: A systematic review and Meta-analysis, with a focus on sex". Heart & Lung. 50 (4): 504–524. doi:10.1016/j.hrtlng.2021.02.016. hdl: 10315/38987 . PMID   33836441. S2CID   233201693.
  22. Santiago de Araújo Pio C, Beckie TM, Varnfield M, Sarrafzadegan N, Babu AS, Baidya S, et al. (January 2020). "Promoting patient utilization of outpatient cardiac rehabilitation: A joint International Council and Canadian Association of Cardiovascular Prevention and Rehabilitation position statement". International Journal of Cardiology. 298: 1–7. doi: 10.1016/j.ijcard.2019.06.064 . hdl: 10034/622555 . PMID   31405584.
  23. Grace SL, Kotseva K, Whooley MA (July 2021). "Cardiac Rehabilitation: Under-Utilized Globally". Current Cardiology Reports. 23 (9): 118. doi:10.1007/s11886-021-01543-x. hdl: 10315/38989 . PMID   34269894. S2CID   235916856.
  24. Stewart C, Ghisi GL, Davis EM, Grace SL (2023). "Cardiac Rehabilitation Barriers Scale (CRBS)". In Krägeloh CU, Alyami M, Medvedev ON (eds.). International Handbook of Behavioral Health Assessment. Cham: Springer International Publishing. pp. 1–57. doi:10.1007/978-3-030-89738-3_39-1. ISBN   978-3-030-89738-3.
  25. Turk-Adawi K, Supervia M, Lopez-Jimenez F, Pesah E, Ding R, Britto RR, et al. (August 2019). "Cardiac Rehabilitation Availability and Density around the Globe". eClinicalMedicine. 13: 31–45. doi:10.1016/j.eclinm.2019.06.007. PMC   6737209 . PMID   31517261.
  26. Ghisi GL, Polyzotis P, Oh P, Pakosh M, Grace SL (June 2013). "Physician factors affecting cardiac rehabilitation referral and patient enrollment: a systematic review". Clinical Cardiology. 36 (6): 323–335. doi:10.1002/clc.22126. PMC   3736151 . PMID   23640785.
  27. Ghanbari-Firoozabadi M, Mirzaei M, Nasiriani K, Hemati M, Entezari J, Vafaeinasab M, et al. (2020-01-01). "Cardiac Specialists' Perspectives on Barriers to Cardiac Rehabilitation Referral and Participation in a Low-Resource Setting". Rehabilitation Process and Outcome. 9: 1179572720936648. doi: 10.1177/1179572720936648 . PMC   8282146 . PMID   34497466.
  28. Shanmugasegaram S, Gagliese L, Oh P, Stewart DE, Brister SJ, Chan V, Grace SL (February 2012). "Psychometric validation of the cardiac rehabilitation barriers scale". Clinical Rehabilitation. 26 (2): 152–164. doi:10.1177/0269215511410579. PMC   3351783 . PMID   21937522.
  29. Santiago de Araújo Pio C, Chaves GS, Davies P, Taylor RS, Grace SL (February 2019). "Interventions to promote patient utilisation of cardiac rehabilitation". The Cochrane Database of Systematic Reviews. 2019 (2): CD007131. doi:10.1002/14651858.CD007131.pub4. PMC   6360920 . PMID   30706942.
  30. Samayoa L, Grace SL, Gravely S, Scott LB, Marzolini S, Colella TJ (July 2014). "Sex differences in cardiac rehabilitation enrollment: a meta-analysis". The Canadian Journal of Cardiology. 30 (7): 793–800. doi: 10.1016/j.cjca.2013.11.007 . hdl: 10315/27523 . PMID   24726052.
  31. Midence L, Mola A, Terzic CM, Thomas RJ, Grace SL (November–December 2014). "Ethnocultural diversity in cardiac rehabilitation". Journal of Cardiopulmonary Rehabilitation and Prevention. 34 (6): 437–444. doi: 10.1097/HCR.0000000000000089 . PMID   25357126.
  32. Koehler Hildebrandt AN, Hodgson JL, Dodor BA, Knight SM, Rappleyea DL (September 2016). "Biopsychosocial-Spiritual Factors Impacting Referral to and Participation in Cardiac Rehabilitation for African American Patients: A Systematic Review". Journal of Cardiopulmonary Rehabilitation and Prevention. 36 (5): 320–330. doi: 10.1097/HCR.0000000000000183 . PMID   27496250. S2CID   10829735.
  33. Grace SL, Shanmugasegaram S, Gravely-Witte S, Brual J, Suskin N, Stewart DE (2009). "Barriers to cardiac rehabilitation: DOES AGE MAKE A DIFFERENCE?". Journal of Cardiopulmonary Rehabilitation and Prevention. 29 (3): 183–187. doi:10.1097/HCR.0b013e3181a3333c. PMC   2928243 . PMID   19471138.
  34. Leung YW, Brual J, Macpherson A, Grace SL (November 2010). "Geographic issues in cardiac rehabilitation utilization: a narrative review". Health & Place. 16 (6): 1196–1205. doi:10.1016/j.healthplace.2010.08.004. PMC   4474644 . PMID   20724208.
  35. Ruano-Ravina A, Pena-Gil C, Abu-Assi E, Raposeiras S, van 't Hof A, Meindersma E, et al. (November 2016). "Participation and adherence to cardiac rehabilitation programs. A systematic review". International Journal of Cardiology. 223: 436–443. doi:10.1016/j.ijcard.2016.08.120. PMID   27557484. S2CID   205234011.
  36. Santiago de Araújo Pio C, Chaves GS, Davies P, Taylor RS, Grace SL (February 2019). "Interventions to promote patient utilisation of cardiac rehabilitation". The Cochrane Database of Systematic Reviews. 2019 (2): CD007131. doi:10.1002/14651858.cd007131.pub4. PMC   6360920 . PMID   30706942.
  37. Aljehani R, Grace SL, Aburub A, Turk-Adawi K, Ghisi GL (April 2023). "Translation, Cross-Cultural Adaptation and Psychometric Validation of the Arabic Version of the Cardiac Rehabilitation Barriers Scale (CRBS-A) with Strategies to Mitigate Barriers". Healthcare. 11 (8): 1196. doi: 10.3390/healthcare11081196 . PMC   10138187 . PMID   37108029.
  38. Grace SL, Russell KL, Reid RD, Oh P, Anand S, Rush J, et al. (February 2011). "Effect of cardiac rehabilitation referral strategies on utilization rates: a prospective, controlled study". Archives of Internal Medicine. 171 (3): 235–241. doi:10.1001/archinternmed.2010.501. PMID   21325114.
  39. Santiago de Araújo Pio C, Gagliardi A, Suskin N, Ahmad F, Grace SL (August 2020). "Implementing recommendations for inpatient healthcare provider encouragement of cardiac rehabilitation participation: development and evaluation of an online course". BMC Health Services Research. 20 (1): 768. doi: 10.1186/s12913-020-05619-2 . PMC   7439558 . PMID   32819388.
  40. Babu AS, Heald FA, Contractor A, Ghisi GL, Buckley J, Mola A, et al. (May 2022). "Building Capacity Through ICCPR Cardiovascular Rehabilitation Foundations Certification (CRFC): Evaluation of Reach, Barriers, and Impact". Journal of Cardiopulmonary Rehabilitation and Prevention. 42 (3): 178–182. doi:10.1097/hcr.0000000000000655. hdl: 10315/40874 . PMID   34840246. S2CID   244714261.
  41. Grace SL, Elashie S, Sadeghi M, Papasavvas T, Hashmi F, de Melo Ghisi G, et al. (July 2023). "Pilot testing of the International Council of Cardiovascular Prevention and Rehabilitation Registry". International Journal for Quality in Health Care. 35 (3). doi:10.1093/intqhc/mzad050. PMC   10329404 . PMID   37421311.
  42. Turk-Adawi K, Ghisi GL, Tran C, Heine M, Raidah F, Contractor A, Grace SL (May 2023). "First report of the International Council of Cardiovascular Prevention and Rehabilitation's Registry (ICRR)". Expert Review of Cardiovascular Therapy. 21 (5): 357–364. doi:10.1080/14779072.2023.2199154. hdl: 10315/41813 . PMID   37024997. S2CID   258008458.
  43. Mamataz T, Ghisi GL, Pakosh M, Grace SL (June 2022). "Outcomes and cost of women-focused cardiac rehabilitation: A systematic review and meta-analysis". Maturitas. 160: 32–60. doi:10.1016/j.maturitas.2022.01.008. hdl: 10315/40875 . PMID   35550706. S2CID   246424701.
  44. Mamataz T, Ghisi GL, Pakosh M, Grace SL (September 2021). "Nature, availability, and utilization of women-focused cardiac rehabilitation: a systematic review". BMC Cardiovascular Disorders. 21 (1): 459. doi: 10.1186/s12872-021-02267-0 . PMC   8458788 . PMID   34556036.
  45. Ghisi GL, Kin SM, Price J, Beckie TM, Mamataz T, Naheed A, Grace SL (December 2022). "Women-Focused Cardiovascular Rehabilitation: An International Council of Cardiovascular Prevention and Rehabilitation Clinical Practice Guideline". The Canadian Journal of Cardiology. 38 (12): 1786–1798. doi: 10.1016/j.cjca.2022.06.021 . hdl: 10315/40876 . PMID   36085185. S2CID   251967685.
  46. Taylor RS, Dalal HM, McDonagh ST (March 2022). "The role of cardiac rehabilitation in improving cardiovascular outcomes". Nature Reviews. Cardiology. 19 (3): 180–194. doi:10.1038/s41569-021-00611-7. PMC   8445013 . PMID   34531576.
  47. "Exercise-based rehabilitation for coronary heart disease". www.cochrane.org. Retrieved 2022-09-06.
  48. Anderson L, Sharp GA, Norton RJ, Dalal H, Dean SG, Jolly K, et al. (June 2017). "Home-based versus centre-based cardiac rehabilitation". The Cochrane Database of Systematic Reviews. 6 (6): CD007130. doi:10.1002/14651858.CD007130.pub4. PMC   4160096 . PMID   28665511.
  49. Kabboul NN, Tomlinson G, Francis TA, Grace SL, Chaves G, Rac V, et al. (December 2018). "Comparative Effectiveness of the Core Components of Cardiac Rehabilitation on Mortality and Morbidity: A Systematic Review and Network Meta-Analysis". Journal of Clinical Medicine. 7 (12): 514. doi: 10.3390/jcm7120514 . PMC   6306907 . PMID   30518047.
  50. Francis T, Kabboul N, Rac V, Mitsakakis N, Pechlivanoglou P, Bielecki J, et al. (March 2019). "The Effect of Cardiac Rehabilitation on Health-Related Quality of Life in Patients With Coronary Artery Disease: A Meta-analysis". The Canadian Journal of Cardiology. 35 (3): 352–364. doi:10.1016/j.cjca.2018.11.013. PMID   30825955. S2CID   73474249.
  51. Shields GE, Wells A, Doherty P, Heagerty A, Buck D, Davies LM (September 2018). "Cost-effectiveness of cardiac rehabilitation: a systematic review". Heart. 104 (17): 1403–1410. doi:10.1136/heartjnl-2017-312809. PMC   6109236 . PMID   29654096.
  52. Mamataz T, Uddin J, Ibn Alam S, Taylor RS, Pakosh M, Grace SL (2021-07-13). "Effects of cardiac rehabilitation in low-and middle-income countries: A systematic review and meta-analysis of randomised controlled trials". Progress in Cardiovascular Diseases. 70: 119–174. doi:10.1016/j.pcad.2021.07.004. PMC   9187522 . PMID   34271035. S2CID   236000955.
  53. McDonagh, Sinead Tj; Dalal, Hasnain; Moore, Sarah; Clark, Christopher E.; Dean, Sarah G.; Jolly, Kate; Cowie, Aynsley; Afzal, Jannat; Taylor, Rod S. (2023-10-27). "Home-based versus centre-based cardiac rehabilitation". The Cochrane Database of Systematic Reviews. 2023 (10): CD007130. doi:10.1002/14651858.CD007130.pub5. ISSN   1469-493X. PMC  10604509. PMID   37888805.
  54. Thomas RJ, Beatty AL, Beckie TM, Brewer LC, Brown TM, Forman DE, et al. (July 2019). "Home-Based Cardiac Rehabilitation: A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology" (PDF). Circulation. 140 (1): e69–e89. doi: 10.1161/CIR.0000000000000663 . PMID   31082266. S2CID   153312127.
  55. Chong MS, Sit JW, Karthikesu K, Chair SY (December 2021). "Effectiveness of technology-assisted cardiac rehabilitation: A systematic review and meta-analysis". International Journal of Nursing Studies. 124: 104087. doi:10.1016/j.ijnurstu.2021.104087. PMID   34562846. S2CID   237636685.
  56. Ramachandran HJ, Jiang Y, Tam WW, Yeo TJ, Wang W (May 2022). "Effectiveness of home-based cardiac telerehabilitation as an alternative to Phase 2 cardiac rehabilitation of coronary heart disease: a systematic review and meta-analysis". European Journal of Preventive Cardiology. 29 (7): 1017–1043. doi:10.1093/eurjpc/zwab106. PMC   8344786 . PMID   34254118.
  57. Jin K, Khonsari S, Gallagher R, Gallagher P, Clark AM, Freedman B, et al. (April 2019). "Telehealth interventions for the secondary prevention of coronary heart disease: A systematic review and meta-analysis". European Journal of Cardiovascular Nursing. 18 (4): 260–271. doi:10.1177/1474515119826510. PMID   30667278. S2CID   58601002.
  58. Abraham LN, Sibilitz KL, Berg SK, Tang LH, Risom SS, Lindschou J, et al. (May 2021). "Exercise-based cardiac rehabilitation for adults after heart valve surgery". The Cochrane Database of Systematic Reviews. 2021 (5): CD010876. doi:10.1002/14651858.CD010876.pub3. PMC   8105032 . PMID   33962483.
  59. Risom SS, Zwisler AD, Johansen PP, Sibilitz KL, Lindschou J, Gluud C, et al. (February 2017). Risom SS (ed.). "Exercise-based cardiac rehabilitation for adults with atrial fibrillation". The Cochrane Database of Systematic Reviews. 2 (2). Chichester, UK: John Wiley & Sons, Ltd: CD011197. doi:10.1002/14651858.cd011197. PMC   6464537 . PMID   28181684.
  60. Anderson L, Nguyen TT, Dall CH, Burgess L, Bridges C, Taylor RS (April 2017). "Exercise-based cardiac rehabilitation in heart transplant recipients". The Cochrane Database of Systematic Reviews. 2017 (4): CD012264. doi:10.1002/14651858.CD012264.pub2. PMC   6478176 . PMID   28375548.
  61. Dibben GO, Dalal HM, Taylor RS, Doherty P, Tang LH, Hillsdon M (September 2018). "Cardiac rehabilitation and physical activity: systematic review and meta-analysis". Heart. 104 (17): 1394–1402. doi:10.1136/heartjnl-2017-312832. PMC   6109237 . PMID   29654095.
  62. Grace, Sherry L (2023-01-02). "Evidence is indisputable that cardiac rehabilitation provides health benefits and event reduction: time for policy action" . European Heart Journal. 44 (6): 470–472. doi:10.1093/eurheartj/ehac690. ISSN   0195-668X. PMID   36746185.
  63. Turk-Adawi K, Supervia M, Ghisi G, Cuenza L, Yeo TJ, Chen SY, et al. (July 2023). "The impact of ICCPR's Global Audit of Cardiac Rehabilitation: where are we now and where do we need to go?". eClinicalMedicine. 61: 102092. doi: 10.1016/j.eclinm.2023.102092 . PMC   10388569 . PMID   37528847.
  64. Grace, Sherry L.; Taylor, Rod S.; Gaalema, Diann E.; Redfern, Julie; Kotseva, Kornelia; Ghisi, Gabriela (July 2023). "Cardiac Rehabilitation" (PDF). JACC: Advances. 2 (5): 100412. doi: 10.1016/j.jacadv.2023.100412 . ISSN   2772-963X.
  65. Grace SL, Warburton DR, Stone JA, Sanderson BK, Oldridge N, Jones J, et al. (March–April 2013). "International Charter on Cardiovascular Prevention and Rehabilitation: a call for action". Journal of Cardiopulmonary Rehabilitation and Prevention. 33 (2): 128–131. doi:10.1097/HCR.0b013e318284ec82. PMC   4559455 . PMID   23399847.