Coronary stent

Last updated
Coronary stent
Taxus stent FDA.jpg
An example of a coronary stent. This Taxus stent is labeled as a drug-eluting stent.
ICD-9-CM 36.06

A coronary stent is a tube-shaped device placed in the coronary arteries that supply blood to the heart, to keep the arteries open in patients suffering from coronary heart disease. The vast majority of stents used in modern interventional cardiology are drug-eluting stents (DES). They are used in a medical procedure called percutaneous coronary intervention (PCI). Coronary stents are divided into two broad types: drug-eluting and bare metal stents. As of 2023, drug-eluting stents were used in more than 90% of all PCI procedures. [1] [2] Stents reduce angina (chest pain) and have been shown to improve survival and decrease adverse events after a patient has suffered a heart attack—medically termed an acute myocardial infarction. [3] [4]

Contents

Similar stents and stenting procedures are used in atherosclerosis of arterial vessels of the limbs—particularly in the legs, such as in peripheral artery disease. [5]

Medical uses

Diagram of stent placement. In A, the catheter is inserted across the lesion. In B, the balloon is inflated, expanding the stent and compressing the plaque. In C, the catheter and deflated balloon have been removed. Before-and-after cross sections of the artery show the results of the stent placement. PTCA stent NIH.gif
Diagram of stent placement. In A, the catheter is inserted across the lesion. In B, the balloon is inflated, expanding the stent and compressing the plaque. In C, the catheter and deflated balloon have been removed. Before-and-after cross sections of the artery show the results of the stent placement.
Arterial Stenting 3D Medical Animation

Cardiac stenting is achieved by PCI procedures in two distinct medical situations, when a patient has clearly suffered a heart attack and therefore PCI/stenting is being used in an emergency setting, termed 'primary PCI'. It is also a procedure used in patients that are exhibiting prolonged clinical symptoms of coronary artery narrowing (angina, evidence from stress test data, various imaging techniques etc.). [6]

Patients not undergoing primary PCI are usually awake during the placement of a coronary stent, though local anesthetics are used at the site of catheter entry, to ensure there is no pain. In reality practices vary, though patient comfort is a priority. Various techniques of pain management and anesthesia are practiced during current PCI stent placement procedures. [7]

The catheter/stent system is introduced into the body by penetrating a peripheral artery (an artery located in the arm or leg) and passed through the arterial system to deliver the DES into the blocked coronary artery. The stent is then expanded to dilate (open) blocked or narrowed coronary arteries (narrowed by plaque buildup), caused by a condition known as atherosclerosis. Peripheral arterial access is usually via the femoral (upper leg) or the radial artery (arm/wrist) and less commonly performed via the brachial or ulnar artery (wrist/arm). Historically, controlling bleeding at the point of arterial access after the procedure was an issue, modern arterial pressure bands and arterial closure system now exist which have helped control post procedure bleeding, but bleeding after the procedure is still a matter of concern. [8] [9] [10] [11] [12]

The 'stent tube mesh' is initially 'collapsed' onto the catheter, that catheter contains an inflating balloon component. In this collapsed state, it is small enough to be passed though 'relatively' narrow arteries and then inflated and compressed firmly against the diseased artery wall, by air pressure introduced via the still attached catheter, inflation time and pressure are recorded during this placement procedure. Consider an umbrella metaphor, initially unopened and then opened. [13] [14]

Many significant treatment decisions are made in real time during the actual stent placement, the Interventional Cardiologist uses Intravascular ultrasound (IVUS) and fluoroscopic imaging data to assess the exact location, the true occlusion status. A radiopaque contrast dye is passed through the catheter and is used to visualize the arteries and evaluate the location of the narrowed vessel. This information is used in real time to decide how best to treat the occlusion(s). Information regarding the health and anatomy of the broader coronary blood supply can also be evaluated; as coronary vasculature varies from individual to individual. This data is captured on video and is valuable if any further treatments of a patient are necessary. [15] [16] [17]

Recovery and rehabilitation

For many patients stenting procedures do not require an in-hospital stay. Much of the time spent in immediate recovery post stenting is to ensure the access site is not bleeding. The patient is generally monitored using ECG etc. Medications to prevent a blood clot from forming in the stent are given directly after the stenting procedure, commonly in the form of an immediate loading dose of the potent anticoagulant (blood thinner) plavix administered as a tablet. Other anticoagulant medicines are also used and the long term combination of aspirin and plavix is a typical post stenting strategy. For patients undergoing PCI after a heart attack extended stays are very dependent on the degree of damage caused by the event. [18] [19]

As a stent/DES is a medical device, patients are given a 'medical device card' with information on the implanted DES and a medical device serial number; this is important and is useful in future potential medical procedures. This is also the case of several arterial closure systems which are also medical devices. There is usually soreness at the point of entry into the arterial system, and fairly large hematomas (significant bruising) are very common. This soreness usually improves after a week or so. Usually, patients are advised to 'take it easy' for a week or two and are instructed to be cautious not to lift any substantial weights. This is primarily to ensure the access site heals. Follow up appoints within a week or two of the procedure with a cardiologist or primary care provider/GP are a standard practice. [20]

It is a standard practice to have further follow-up examinations every three to six months for the first year, though these practices do vary. Further diagnostic coronary angiography is not routinely indicated after coronary stent implantation. If progression of heart disease is suspected, a stress test could be performed; patients who develop symptoms or show evidence of ischemia in a stress test may undergo diagnostic cardiac re-catheterization. [21] [22]

Physical examinations play an important role after PCI-stenting procedures. Those patients at high risk of suffering from complications and those with more complexed coronary issues, angiography may be indicated regardless of the findings of non-invasive stress tests. [23]

Cardiac rehabilitation activities are dependent on many factors, but largely are connected to the degree of heart muscle damage prior to the PCI/DES procedure. Many patients who undergo this procedure have not had a heart attack, and may have no notable damage to their hearts. Others may have had a heart attack and the amount of damage to their heart's ability to supply the body with oxygenated blood might be grossly impaired. Rehabilitation activities are prescribed to fit each individuals needs. [24]

Risks

Though the chances of having complications from a PCI are small, some serious complications include the development of arrhythmias, adverse reactions/effects of the dye used in the procedure, infection, restenosis, clotting, blood vessel damage, and bleeding at catheter insertion site. [25]

Re-occlusion

Coronary artery stents, typically a metal framework, can be placed inside the artery to help keep it open. However, as the stent is a foreign object (not native to the body), it incites an immune response. This may cause scar tissue (cell proliferation) to rapidly grow over the stent and cause a neointimal hyperplasia. In addition, if the stent damages the artery wall there is a strong tendency for clots to form at the site. Since platelets are involved in the clotting process, patients must take dual antiplatelet therapy starting immediately before or after stenting: usually an ADP receptor antagonist (e.g. clopidogrel or ticagrelor) for up to one year and aspirin indefinitely. [26] [1]

However, in some cases the dual antiplatelet therapy may be insufficient to fully prevent clots that may result in stent thrombosis; these clots and cell proliferation may sometimes cause standard (“bare-metal”) stents to become blocked (restenosis). Drug-eluting stents were developed with the intent of dealing with this problem: by releasing an antiproliferative drug (drugs typically used against cancer or as immunosuppressants), they can help reduce the incidence of "in-stent restenosis" (re-narrowing). A 2017 Cochrane review comparing bare-metal and drug-eluding stents found that the latter may result in reduced incidence of serious adverse events. [27] However, at maximum follow up, it found no difference between the two on cardiovascular mortality and myocardial infarction. [27]

Restenosis

One of the drawbacks of vascular stents is the potential for restenosis via the development of a thick smooth muscle tissue inside the lumen, the so-called neointima. Development of a neointima is variable but can at times be so severe as to re-occlude the vessel lumen (restenosis), especially in the case of smaller-diameter vessels, which often results in reintervention. Consequently, current research focuses on the reduction of neointima after stent placement. Substantial improvements have been made, including the use of more biocompatible materials, anti-inflammatory drug-eluting stents, resorbable stents, and others. Restenosis can be treated with a reintervention using the same method.

Usage considerations

The value of stenting in those undergoing a heart attack (by immediately alleviating the obstruction) is clearly defined in multiple studies, but studies have failed to find reduction in hard endpoints for stents vs. medical therapy in stable angina patients (see controversies in Percutaneous coronary intervention). The artery-opening stent can temporarily alleviate chest pain, but does not contribute to longevity.

The "...vast majority of heart attacks do not originate with obstructions that narrow arteries." Further, “...researchers say, most heart attacks do not occur because an artery is narrowed by plaque. Instead, they say, heart attacks occur when an area of plaque bursts, a clot forms over the area and blood flow is abruptly blocked. In 75 to 80 percent of cases, the plaque that erupts was not obstructing an artery and would not be stented or bypassed. The dangerous plaque is soft and fragile, produces no symptoms and would not be seen as an obstruction to blood flow.” [28] The use of statins to create more stable plaques has been well studied, and their use along with both PCI/Stenting and anticoagulant therapies is considered a broader treatment strategy. [29]

Some cardiologists believe that stents are overused; however, in certain patient groups, such as the elderly, studies have found evidence of under-use. [30]

Research

While revascularisation (by stenting or bypass surgery) is of clear benefit in reducing mortality and morbidity in patients with acute symptoms (acute coronary syndromes) including myocardial infarction, their benefit is less marked in stable patients. Clinical trials have failed to demonstrate that coronary stents improve survival over best medical treatment.

Several other clinical trials have been performed to examine the efficacy of coronary stenting and compare with other treatment options. A consensus of the medical community does not exist.[ citation needed ]

History

The first stent was patented in 1972 by Robert A. Ersek, MD based on work he had done in animals in 1969 at the University of Minnesota. In addition to intervascular stents, he also developed the first stent-supported porcine valve that can be implanted transcutaneously in 7 minutes, eliminating open-heart surgery. [37]

In development are stents with biocompatible surface coatings which do not elute drugs, and also absorbable stents (metal or polymer).

See also

Related Research Articles

<span class="mw-page-title-main">Angioplasty</span> Procedure to widen narrow arteries or veins

Angioplasty, also known as balloon angioplasty and percutaneous transluminal angioplasty (PTA), is a minimally invasive endovascular procedure used to widen narrowed or obstructed arteries or veins, typically to treat arterial atherosclerosis.

An antiplatelet drug (antiaggregant), also known as a platelet agglutination inhibitor or platelet aggregation inhibitor, is a member of a class of pharmaceuticals that decrease platelet aggregation and inhibit thrombus formation. They are effective in the arterial circulation where classical Vitamin K antagonist anticoagulants have minimal effect.

<span class="mw-page-title-main">Coronary artery bypass surgery</span> Surgical procedure to restore normal blood flow to an obstructed coronary artery

Coronary artery bypass surgery, also known as coronary artery bypass graft, is a surgical procedure to treat coronary artery disease (CAD), the buildup of plaques in the arteries of the heart. It can relieve chest pain caused by CAD, slow the progression of CAD, and increase life expectancy. It aims to bypass narrowings in heart arteries by using arteries or veins harvested from other parts of the body, thus restoring adequate blood supply to the previously ischemic heart.

<span class="mw-page-title-main">Stent</span> Type of medical device

In medicine, a stent is a tube usually constructed of a metallic alloy or a polymer. It is inserted into the lumen of an anatomic vessel or duct to keep the passageway open.

<span class="mw-page-title-main">Coronary catheterization</span> Radiography of heart and blood vessels

A coronary catheterization is a minimally invasive procedure to access the coronary circulation and blood filled chambers of the heart using a catheter. It is performed for both diagnostic and interventional (treatment) purposes.

<span class="mw-page-title-main">Restenosis</span> Recurrence of stenosis, a narrowing of a blood vessel

Restenosis is the recurrence of stenosis, a narrowing of a blood vessel, leading to restricted blood flow. Restenosis usually pertains to an artery or other large blood vessel that has become narrowed, received treatment to clear the blockage, and subsequently become re-narrowed. This is usually restenosis of an artery, or other blood vessel, or possibly a vessel within an organ.

<span class="mw-page-title-main">Interventional cardiology</span> Catheter-based treatment of structural heart diseases

Interventional cardiology is a branch of cardiology that deals specifically with the catheter based treatment of structural heart diseases. Andreas Gruentzig is considered the father of interventional cardiology after the development of angioplasty by interventional radiologist Charles Dotter.

<span class="mw-page-title-main">Coronary thrombosis</span> Medical condition

Coronary thrombosis is defined as the formation of a blood clot inside a blood vessel of the heart. This blood clot may then restrict blood flow within the heart, leading to heart tissue damage, or a myocardial infarction, also known as a heart attack.

Intravascular ultrasound (IVUS) or intravascular echocardiography is a medical imaging methodology using a specially designed catheter with a miniaturized ultrasound probe attached to the distal end of the catheter. The proximal end of the catheter is attached to computerized ultrasound equipment. It allows the application of ultrasound technology, such as piezoelectric transducer or CMUT, to see from inside blood vessels out through the surrounding blood column, visualizing the endothelium of blood vessels.

<span class="mw-page-title-main">Cardiac catheterization</span> Insertion of a catheter into a chamber or vessel of the heart

Cardiac catheterization is the insertion of a catheter into a chamber or vessel of the heart. This is done both for diagnostic and interventional purposes.

<span class="mw-page-title-main">Percutaneous coronary intervention</span> Medical techniques used to manage coronary occlusion

Percutaneous coronary intervention (PCI) is a minimally invasive non-surgical procedure used to treat narrowing of the coronary arteries of the heart found in coronary artery disease. The procedure is used to place and deploy coronary stents, a permanent wire-meshed tube, to open narrowed coronary arteries. PCI is considered 'non-surgical' as it uses a small hole in a peripheral artery (leg/arm) to gain access to the arterial system; an equivalent surgical procedure would involve the opening of the chest wall to gain access to the heart area. The term 'coronary angioplasty with stent' is synonymous with PCI. The procedure visualises the blood vessels via fluoroscopic imaging and contrast dyes. PCI is performed by an interventional cardiologists in a catheterization laboratory setting.

<span class="mw-page-title-main">Drug-eluting stent</span> Medical implant

A drug-eluting stent (DES) is a tube made of a mesh-like material used to treat narrowed arteries in medical procedures both mechanically and pharmacologically. A DES is inserted into a narrowed artery using a delivery catheter usually inserted through a larger artery in the groin or wrist. The stent assembly has the DES mechanism attached towards the front of the stent, and usually is composed of the collapsed stent over a collapsed polymeric balloon mechanism, the balloon mechanism is inflated and used to expand the meshed stent once in position. The stent expands, embedding into the occluded artery wall, keeping the artery open, thereby improving blood flow. The mesh design allows for stent expansion and also for new healthy vessel endothelial cells to grow through and around it, securing it in place.

<span class="mw-page-title-main">Bivalirudin</span> Anticoagulant drug

Bivalirudin, sold under the brand names Angiomax and Angiox, among others, is a specific and reversible direct thrombin inhibitor (DTI). Chemically, it is a synthetic congener of the naturally occurring drug hirudin, found in the saliva of the medicinal leech Hirudo medicinalis. It is manufactured by The Medicines Company.

The history of invasive and interventional cardiology is complex, with multiple groups working independently on similar technologies. Invasive and interventional cardiology is currently closely associated with cardiologists, though the development and most of its early research and procedures were performed by diagnostic and interventional radiologists.

Fractional flow reserve (FFR) is a diagnostic technique used in coronary catheterization. FFR measures pressure differences across a coronary artery stenosis to determine the likelihood that the stenosis impedes oxygen delivery to the heart muscle.

<span class="mw-page-title-main">Coronary artery aneurysm</span> Medical condition

Coronary artery aneurysm is an abnormal dilatation of part of the coronary artery. This rare disorder occurs in about 0.3–4.9% of patients who undergo coronary angiography.

<span class="mw-page-title-main">Reperfusion therapy</span> Restoring blood flow post-heart attack

Reperfusion therapy is a medical treatment to restore blood flow, either through or around, blocked arteries, typically after a heart attack. Reperfusion therapy includes drugs and surgery. The drugs are thrombolytics and fibrinolytics used in a process called thrombolysis. Surgeries performed may be minimally-invasive endovascular procedures such as a percutaneous coronary intervention (PCI), which involves coronary angioplasty. The angioplasty uses the insertion of a balloon and/or stents to open up the artery. Other surgeries performed are the more invasive bypass surgeries that graft arteries around blockages.

Transradial catheterization is an endovascular procedure or catheterization procedure performed to diagnose and treat arterial disease. Endovascular procedure can be performed achieving access in to body’s arterial system from either femoral artery, brachial artery or radial artery in the wrist. The transfemoral approach to perform cardiac catheterization has typically been more prevalent in invasive cardiology. But radial access has gained popularity due to technical advances with catheters and lower complication rates than transfemoral access. The European Society of Cardiology and the American Heart Association both support a radial-first approach in acute coronary syndrome.

A dual therapy stent is a coronary artery stent that combines the technology of an antibody-coated stent and a drug-eluting stent. Currently, second-generation drug-eluting stents require long-term use of dual-antiplatelet therapy, which increases the risk of major bleeding occurrences in patients. Compared to drug-eluting stents, dual therapy stents have improved vessel regeneration and cell proliferation capabilities. As a result, dual therapy stents were developed to reduce the long-term need for dual-antiplatelet therapy.

Alfredo E. Rodríguez is an Argentine interventional cardiologist, clinical researcher, and author. He is the Chief of Interventional Cardiology Service at Otamendi Hospital and Director and Founder of the Cardiovascular Research Center (CECI) a non -profit Research Organization in Buenos Aires Argentina.

References

  1. 1 2 Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E (2018-01-09). Braunwald's heart disease : a textbook of cardiovascular medicine (Eleventh ed.). Philadelphia, PA: Elsevier/Saunders. ISBN   9780323555937. OCLC   1021152059.
  2. Koźlik, Maciej; Harpula, Jan; Chuchra, Piotr J.; Nowak, Magdalena; Wojakowski, Wojciech; Gąsior, Paweł (2023-02-09). "Drug-Eluting Stents: Technical and Clinical Progress". Biomimetics. 8 (1): 72. doi: 10.3390/biomimetics8010072 . ISSN   2313-7673. PMC   9944483 . PMID   36810403.
  3. Armstrong PW (July 2006). "A comparison of pharmacologic therapy with/without timely coronary intervention vs. primary percutaneous intervention early after ST-elevation myocardial infarction: the WEST (Which Early ST-elevation myocardial infarction Therapy) study". European Heart Journal. 27 (13): 1530–1538. doi: 10.1093/eurheartj/ehl088 . PMID   16757491.
  4. Brunton LL, Knollmann BC, Hilal-Dandan R (5 December 2017). Goodman & Gilman's the pharmacological basis of therapeutics (Thirteenth ed.). New York: McGraw Hill Medical. ISBN   9781259584732. OCLC   994570810.
  5. Secretariat, Medical Advisory (2010). "Stenting for Peripheral Artery Disease of the Lower Extremities: An Evidence-Based Analysis". Ontario Health Technology Assessment Series. 10 (18): 1–88. PMC   3377569 . PMID   23074395.
  6. Toutouzas, Konstantinos; Kaitozis, Odysseas; Tousoulis, Dimitris (2018-01-01), Tousoulis, Dimitris (ed.), "Chapter 3.7 - Primary Percutaneous Coronary Intervention", Coronary Artery Disease, Academic Press, pp. 417–441, ISBN   978-0-12-811908-2 , retrieved 2023-11-21
  7. Song, Jong Wook; Soh, Sarah; Shim, Jae-Kwang (2019-09-16). "Monitored Anesthesia Care for Cardiovascular Interventions". Korean Circulation Journal. 50 (1): 1–11. doi:10.4070/kcj.2019.0269. ISSN   1738-5520. PMC   6923237 . PMID   31642214.
  8. Shuvy, Mony; Ko, Dennis T (2014-02-28). "Bleeding after percutaneous coronary intervention: can we still ignore the obvious?". Open Heart. 1 (1): e000036. doi:10.1136/openhrt-2014-000036. ISSN   2053-3624. PMC   4195920 . PMID   25332793.
  9. "TR BAND® Radial Compression Device". www.terumois.com. Retrieved 2023-10-21.
  10. Thibert, Michael J.; Fordyce, Christopher B.; Cairns, John A.; Turgeon, Ricky D.; Mackay, Martha; Lee, Terry; Tocher, Wendy; Singer, Joel; Perry-Arnesen, Michele; Wong, Graham C. (2021-02-16). "Access-Site vs Non-Access-Site Major Bleeding and In-Hospital Outcomes Among STEMI Patients Receiving Primary PCI". CJC Open. 3 (7): 864–871. doi:10.1016/j.cjco.2021.02.009. ISSN   2589-790X. PMC   8347846 . PMID   34401693.
  11. Canfield, John; Totary-Jain, Hana (2018-10-01). "40 Years of Percutaneous Coronary Intervention: History and Future Directions". Journal of Personalized Medicine. 8 (4): 33. doi: 10.3390/jpm8040033 . ISSN   2075-4426. PMC   6313463 . PMID   30275411.
  12. "Percutaneous Coronary Intervention (PCI) Technique: Access, Procedure, Anatomic and Physiologic Assessment". emedicine.medscape.com. Retrieved 2023-11-21.
  13. "Percutaneous Coronary Intervention (PCI)". Yale Medicine. Retrieved 2023-10-21.
  14. Medtronic. "Onyx Frontier DES - Coronary Stents". www.medtronic.com. Retrieved 2023-11-19.
  15. "IVUS in PCI Guidance". American College of Cardiology. Retrieved 2023-11-21.[ permanent dead link ]
  16. Health, Center for Devices and Radiological (2023-08-15). "Fluoroscopy". FDA.
  17. "Iodine-containing contrast medium". InsideRadiology. 2016-09-13. Retrieved 2023-11-21.
  18. Radiology (ACR), Radiological Society of North America (RSNA) and American College of. "Angioplasty and Vascular Stenting". Radiologyinfo.org. Retrieved 2023-11-21.
  19. "Short Hospital Stays After Angioplasty Following Heart Attack Often Sufficient". American College of Cardiology. Retrieved 2023-11-21.
  20. "Stents - What to Expect After Getting a Stent | NHLBI, NIH". www.nhlbi.nih.gov. 2022-03-24. Retrieved 2023-11-21.
  21. "Discharge advice after your coronary angiogram, angioplasty or stent insertion (PCI)". Hull University Teaching Hospitals NHS Trust. 2021-04-09. Retrieved 2023-11-21.
  22. "Coronary angioplasty and stents (PCI)". British Heart Foundation. Retrieved 2023-11-21.
  23. "Stents - Living With a Stent | NHLBI, NIH". www.nhlbi.nih.gov. 2022-03-24. Retrieved 2023-11-21.
  24. CDC (2022-09-12). "How Cardiac Rehabilitation Can Help Heal Your Heart | cdc.gov". Centers for Disease Control and Prevention. Retrieved 2023-11-21.
  25. "Stents". National Heart, Lung, and Blood Institute (NHLBI). U.S. National Institutes of Health. Retrieved 2018-11-01.
  26. Michel T (2006) [1941]. "Treatment of Myocardial Ischemia". In Brunton LL, Lazo JS, Parker KL (eds.). Goodman & Gilman's The Pharmacological Basis of Therapeutics (11th ed.). New York: McGraw-Hill. pp.  842.
  27. 1 2 Feinberg J, Nielsen EE, Greenhalgh J, Hounsome J, Sethi NJ, Safi S, et al. (Cochrane Heart Group) (August 2017). "Drug-eluting stents versus bare-metal stents for acute coronary syndrome". The Cochrane Database of Systematic Reviews. 8 (8): CD012481. doi:10.1002/14651858.CD012481.pub2. PMC   6483499 . PMID   28832903.
  28. Kolata G (21 March 2004). "New Heart Studies Question the Value Of Opening Arteries". The New York Times. Retrieved 14 January 2011.
  29. "Can Statins Actually Reverse Plaque Buildup?". Cleveland Clinic. 2021-03-26. Retrieved 2023-11-06.
  30. "Avoiding Overuse: Coronary Stents". Lown Institute Hospital Index. Retrieved 2023-11-06.
  31. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. (April 2007). "Optimal medical therapy with or without PCI for stable coronary disease". The New England Journal of Medicine. 356 (15): 1503–1516. doi: 10.1056/NEJMoa070829 . PMID   17387127.
  32. Hueb W, Soares PR, Gersh BJ, César LA, Luz PL, Puig LB, et al. (May 2004). "The medicine, angioplasty, or surgery study (MASS-II): a randomized, controlled clinical trial of three therapeutic strategies for multivessel coronary artery disease: one-year results". Journal of the American College of Cardiology. 43 (10): 1743–1751. doi: 10.1016/j.jacc.2003.08.065 . PMID   15145093.
  33. Hueb W, Lopes NH, Gersh BJ, Soares P, Machado LA, Jatene FB, et al. (March 2007). "Five-year follow-up of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease". Circulation. 115 (9): 1082–1089. doi: 10.1161/CIRCULATIONAHA.106.625475 . PMID   17339566. S2CID   72944937.
  34. Clinical trial number NCT00114972 for "SYNTAX Study: TAXUS Drug-Eluting Stent Versus Coronary Artery Bypass Surgery for the Treatment of Narrowed Arteries (SYNTAX)" at ClinicalTrials.gov SYNTAX trial 2005-2008
  35. "International Study of Comparative Health Effectiveness With Medical and Invasive Approaches - ISCHEMIA". American College of Cardiology.
  36. Kolata G (16 November 2019). "Surgery for Blocked Arteries Is Often Unwarranted, Researchers Find". The New York Times.
  37. US 3657744,Ersek RA,"Method for fixing prosthetic implants in a living body",issued 25 April 1972, assigned to University of Minnesota.