Mitral valve repair

Last updated
Mitral valve repair
Diagram of the human heart (cropped).svg
Anterior (frontal) view of the opened heart. White arrows indicate normal blood flow. (Mitral valve labeled at center right.)
ICD-9-CM 35.12

Mitral valve repair is a cardiac surgery procedure performed by cardiac surgeons to treat stenosis (narrowing) or regurgitation (leakage) of the mitral valve. The mitral valve is the "inflow valve" for the left side of the heart. Blood flows from the lungs, where it picks up oxygen, through the pulmonary veins, to the left atrium of the heart. After the left atrium fills with blood, the mitral valve allows blood to flow from the left atrium into the heart's main pumping chamber called the left ventricle. It then closes to keep blood from leaking back into the left atrium or lungs when the ventricle contracts (squeezes) to push blood out to the body. It has two flaps, or leaflets, known as cusps.

Contents

The techniques of mitral valve repair include inserting a cloth-covered ring around the valve to bring the leaflets into contact with each other (annuloplasty), removal of redundant/loose segments of the leaflets (quadrangular resection), and re-suspension of the leaflets with artificial (Gore-Tex) cords.

Procedures on the mitral valve usually require a median sternotomy, but advances in non-invasive methods (such as keyhole surgery) allow surgery without a sternotomy (and resulting pain and scar). Minimally invasive mitral valve surgery is much more technically demanding and may involve higher risk.

Occasionally, the mitral valve is abnormal from birth (congenital). More often the mitral valve becomes abnormal with age (degenerative) or as a result of rheumatic fever. In rare instances the mitral valve can be destroyed by infection or a bacterial endocarditis. Mitral regurgitation may also occur as a result of ischemic heart disease (coronary artery disease) or non-ischemic heart disease (dilated cardiomyopathy).

History

In 1923 Dr. Elliott Cutler of the Peter Bent Brigham Hospital performed the world’s first successful heart valve surgery – a mitral valve repair. The patient was a 12-year-old comatose girl with rheumatic mitral stenosis. [1]

The development of the heart-lung machine in the 1950s paved the way for replacement of the mitral valve with an artificial valve in the 1960s. For decades after, mitral valve replacement was the only surgical option for patients with a severely diseased mitral valve. However, there are some significant downsides to a prosthetic mitral valve. Infection of the valve can occur, which is dangerous and difficult to treat. Patients with mechanical heart valves are required to take blood thinners for the rest of their lives, which presents a risk of bleeding complications. The artificial mitral valve has an elevated risk of stroke. Patients with mechanical heart valves who use warfarin for anticoagulation have to be on long-term anticoagulation therapy. This means they must go to the clinic and have a lab blood draw done, typically once a month but more frequently if the level needs to be closely monitored until it is in the therapeutic range. The therapeutic range for most adults with a mechanical valve is an INR of 2.5–3.5. [2] Finally, artificial tissue valves will wear out – on average lasting between 10 and 15 years, requiring further surgery at an advanced age.

In the past two decades, some surgeons have embraced surgical techniques to repair the damaged native valve, rather than replace it. These techniques were pioneered by a French heart surgeon, Dr. Alain F. Carpentier. A repair still involves major cardiac surgery but for many patients presents the significant advantage of avoiding blood thinners and may provide a more durable result. However, some studies suggest that blood thinners like Warfarin can reduce a “composite of bleeding and thromboembolic complications” and potentially postoperative complications, as those taking Warfarin have shown “superior long-term survival estimates.” [3] Not all damaged valves are suitable for repair; in some, the state of valve disease is too advanced and replacement is necessary. Often, a surgeon must decide during the operation itself whether a repair or a replacement is the best course of action. For patients with the most common type of mitral valve disease, termed "degenerative" or "myxomatous" mitral valve disease, repair rates are very high and long term durability is excellent. [4]

There has been great debate about timing of surgery in patients with asymptomatic mitral valve regurgitation.

The traditional surgical approach to a mitral valve repair is a full or partial sternotomy, in which the surgeon cuts through the breastbone at the center of the chest to access the heart. There are minimally invasive (port access) options available pioneered by Hugo Vanerman in Belgium. The minimally invasive approach does not involve cutting the breastbone, but instead uses multiple incisions in the side of the chest and the leg. Cardiac surgeons are not unanimous about the relative merits of sternotomy versus the minimally invasive approach. The minimally invasive approach can produce a less prominent scar, is beneficial for very obese patients, and may allow the patient to return to their normal activity sooner than a sternotomy. But some cardiac surgeons argue that unless performed by the most experienced cardiac centers, minimally invasive surgery can involve a longer time on a bypass machine, a lower repair rate, and higher (although still low) risk of stroke. One cardiac surgery professor said, "I think the only benefit is for cosmesis for the patient and the benefit is for marketing and growing our practices for ourselves because it’s a good way to grow one's practice." [5]

Robotic mitral valve repair operations are also being utilized throughout the United States.

In the 2000s there have been several trials of a newer strategy of mitral valve repair that does not require major cardiac surgery. Through a catheter inserted in the groin, the valve leaflets are clipped together. This technique – percutaneous mitral valve repair – is available in Europe but still in clinical trial in the United States. It is a highly specialized technique only available at select hospitals. Early trial results suggest that it may be a beneficial approach for patients who are at high risk from conventional surgery. [6] [7]

As early as January 2000 a team of doctors [8] at the Instituto de Cardiología y Cirugía Cardiovascular in La Habana, Cuba have performed beating heart mitral valve repair or replacement. The beating heart mitral valve replacement technique is as safe as the arrested heart technique, and is the recommended alternative to arrested heart technique. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Aortic valve</span> Valve in the human heart between the left ventricle and the aorta

The aortic valve is a valve in the heart of humans and most other animals, located between the left ventricle and the aorta. It is one of the four valves of the heart and one of the two semilunar valves, the other being the pulmonary valve. The aortic valve normally has three cusps or leaflets, although in 1–2% of the population it is found to congenitally have two leaflets. The aortic valve is the last structure in the heart the blood travels through before stopping the flow through the systemic circulation.

<span class="mw-page-title-main">Mitral valve</span> Valve in the heart connecting the left atrium and left ventricle

The mitral valve, also known as the bicuspid valve or left atrioventricular valve, is one of the four heart valves. It has two cusps or flaps and lies between the left atrium and the left ventricle of the heart. The heart valves are all one-way valves allowing blood flow in just one direction. The mitral valve and the tricuspid valve are known as the atrioventricular valves because they lie between the atria and the ventricles.

<span class="mw-page-title-main">Mitral valve prolapse</span> Medical condition

Mitral valve prolapse (MVP) is a valvular heart disease characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. It is the primary form of myxomatous degeneration of the valve. There are various types of MVP, broadly classified as classic and nonclassic. In severe cases of classic MVP, complications include mitral regurgitation, infective endocarditis, congestive heart failure, and, in rare circumstances, cardiac arrest.

<span class="mw-page-title-main">Mitral stenosis</span> Heart disease with narrowing of valve

Mitral stenosis is a valvular heart disease characterized by the narrowing of the opening of the mitral valve of the heart. It is almost always caused by rheumatic valvular heart disease. Normally, the mitral valve is about 5 cm2 during diastole. Any decrease in area below 2 cm2 causes mitral stenosis. Early diagnosis of mitral stenosis in pregnancy is very important as the heart cannot tolerate increased cardiac output demand as in the case of exercise and pregnancy. Atrial fibrillation is a common complication of resulting left atrial enlargement, which can lead to systemic thromboembolic complications such as stroke.

<span class="mw-page-title-main">Mitral regurgitation</span> Form of valvular heart disease

Mitral regurgitation (MR), also known as mitral insufficiency or mitral incompetence, is a form of valvular heart disease in which the mitral valve is insufficient and does not close properly when the heart pumps out blood. It is the abnormal leaking of blood backwards – regurgitation from the left ventricle, through the mitral valve, into the left atrium, when the left ventricle contracts. Mitral regurgitation is the most common form of valvular heart disease.

Aortic valve replacement is a cardiac surgery procedure whereby a failing aortic valve is replaced with an artificial heart valve. The aortic valve may need to be replaced because of aortic regurgitation, or if the valve is narrowed by stenosis.

<span class="mw-page-title-main">Artificial heart valve</span> Replacement of a valve in the human heart

An artificial heart valve is a one-way valve implanted into a person's heart to replace a heart valve that is not functioning properly. Artificial heart valves can be separated into three broad classes: mechanical heart valves, bioprosthetic tissue valves and engineered tissue valves.

<span class="mw-page-title-main">Valvular heart disease</span> Disease in the valves of the heart

Valvular heart disease is any cardiovascular disease process involving one or more of the four valves of the heart. These conditions occur largely as a consequence of aging, but may also be the result of congenital (inborn) abnormalities or specific disease or physiologic processes including rheumatic heart disease and pregnancy.

<span class="mw-page-title-main">Atrioventricular septal defect</span> Medical condition

Atrioventricular septal defect (AVSD) or atrioventricular canal defect (AVCD), also known as "common atrioventricular canal" or "endocardial cushion defect" (ECD), is characterized by a deficiency of the atrioventricular septum of the heart that creates connections between all four of its chambers. It is a very specific combination of 3 defects:

<span class="mw-page-title-main">Aortic valve repair</span> Treatment of aortic regurgitation

Aortic valve repair or aortic valve reconstruction is the reconstruction of both form and function of a dysfunctional aortic valve. Most frequently it is used for the treatment of aortic regurgitation. It can also become necessary for the treatment of aortic aneurysm, less frequently for congenital aortic stenosis.

Mitral valve replacement is a procedure whereby the diseased mitral valve of a patient's heart is replaced by either a mechanical or tissue (bioprosthetic) valve.

<span class="mw-page-title-main">Tricuspid regurgitation</span> Type of valvular heart disease

Tricuspid regurgitation (TR), also called tricuspid insufficiency, is a type of valvular heart disease in which the tricuspid valve of the heart, located between the right atrium and right ventricle, does not close completely when the right ventricle contracts (systole). TR allows the blood to flow backwards from the right ventricle to the right atrium, which increases the volume and pressure of the blood both in the right atrium and the right ventricle, which may increase central venous volume and pressure if the backward flow is sufficiently severe.

<span class="mw-page-title-main">Lutembacher's syndrome</span> Medical condition

Lutembacher's syndrome is a very rare form of congenital heart disease that affects one of the chambers of the heart as well as a valve. It is commonly known as both congenital atrial septal defect (ASD) and acquired mitral stenosis (MS). Congenital atrial septal defect refers to a hole being in the septum or wall that separates the two atria; this condition is usually seen in fetuses and infants. Mitral stenosis refers to mitral valve leaflets sticking to each other making the opening for blood to pass from the atrium to the ventricles very small. With the valve being so small, blood has difficulty passing from the left atrium into the left ventricle. Septal defects that may occur with Lutembacher's syndrome include: Ostium primum atrial septal defect or ostium secundum which is more prevalent.

The following outline is provided as an overview of and topical guide to cardiology, the branch of medicine dealing with disorders of the human heart. The field includes medical diagnosis and treatment of congenital heart defects, coronary artery disease, heart failure, valvular heart disease and electrophysiology. Physicians who specialize in cardiology are called cardiologists.

David H. Adams is an American cardiac surgeon and the Marie-Josée and Henry R. Kravis Professor and Chairman of the Department of Cardiothoracic Surgery, Icahn School of Medicine at Mount Sinai Hospital in New York City. Dr. Adams is a recognized leader in the field of heart valve surgery and mitral valve reconstruction. As director of Mount Sinai Mitral Valve Repair Center, he has set national benchmarks with >99% degenerative mitral valve repair rates, while running one of the largest valve repair programs in the United States. Dr. Adams is the co-inventor of 2 mitral valve annuloplasty repair rings – the Carpentier-McCarthy-Adams IMR ETlogix Ring and the Carpentier-Edwards Physio II Annuloplasty Ring, and is a senior consultant with royalty agreements with Edwards Lifesciences. He is also the inventor of the Tri-Ad Adams Tricuspid Annuloplasty ring with a royalty agreement with Medtronic. He is a co-author with Professor Alain Carpentier of the benchmark textbook in mitral valve surgery Carpentier's Reconstructive Valve Surgery. He is also the National Co-Principal Investigator of the FDA pivotal trial of the Medtronic-CoreValve transcatheter aortic valve replacement device.

Minimally invasive cardiac surgery, encompasses various aspects of cardiac surgical procedures that can be performed with minimally invasive approach either via mini-thoracotomy or mini-sternotomy. MICS CABG or the McGinn technique is heart surgery performed through several small incisions instead of the traditional open-heart surgery that requires a median sternotomy approach, and can be performed in patients with multivessel coronary artery disease. MICS CABG is a beating-heart multi-vessel procedure performed under direct vision through an anterolateral mini-thoracotomy.

<span class="mw-page-title-main">Hybrid cardiac surgery</span>

A hybrid cardiac surgical procedure in a narrow sense is defined as a procedure that combines a conventional, more invasive surgical part with an interventional part, using some sort of catheter-based procedure guided by fluoroscopy imaging in a hybrid operating room (OR) without interruption. The hybrid technique has a reduced risk of surgical complications and has shown decreased recovery time. It can be used to treat numerous heart diseases and conditions and with the increasing complexity of each case, the hybrid surgical technique is becoming more common.

Mitral valve annuloplasty is a surgical technique for the repair of leaking mitral valves. Due to various factors, the two leaflets normally involved in sealing the mitral valve to retrograde flow may not coapt properly. Surgical repair typically involves the implantation of a device surrounding the mitral valve, called an annuloplasty device, which pulls the leaflets together to facilitate coaptation and aids to re-establish mitral valve function.

<span class="mw-page-title-main">Edwards Lifesciences</span> American biotechnology company

Edwards Lifesciences is an American medical technology company headquartered in Irvine, California, specializing in artificial heart valves and hemodynamic monitoring. It developed the SAPIEN transcatheter aortic heart valve made of cow tissue within a balloon-expandable, cobalt-chromium frame, deployed via catheter. The company has manufacturing facilities at the Irvine headquarters, as well as in Draper, Utah; Costa Rica; the Dominican Republic; Puerto Rico; and Singapore; and is building a new facility due to be completed in 2021 in Limerick, Ireland.

<span class="mw-page-title-main">MitraClip</span>

MitraClip is a medical device used to treat mitral valve regurgitation for individuals who should not have open-heart surgery. It is implanted via a tri-axial transcatheter technique and involves suturing together the anterior and posterior mitral valve leaflets.

References

  1. Cohn, Lawrence H.; Tchantchaleishvili, Vakhtang; Rajab, Taufiek K. (July 9, 2015). "Evolution of the concept and practice of mitral valve repair". Annals of Cardiothoracic Surgery. 4 (4): 315–321. doi:10.3978/j.issn.2225-319X.2015.04.09. PMC   4526492 . PMID   26309840.
  2. Lewis, Sharon (2015). Medical-Surgical Nursing: Assessment and Management of Clinical Problems (Ninth ed.). St. Louis, MO: Elsevier Mosby. p. 825. ISBN   978-0323086783.
  3. Watt, Tessa M. F.; Murray, Shannon L.; Brescia, Alexander A.; Burn, David A.; Wisniewski, Alexander; Khan, Shazli P.; Romano, Matthew A.; Bolling, Steven F. (2020-08-02). "Anticoagulation following mitral valve repair". Journal of Cardiac Surgery. 35 (11). Hindawi Limited: 2887–2894. doi: 10.1111/jocs.14902 . ISSN   0886-0440.
  4. Johnston, Douglas R.; Gillinov, A. Marc; Blackstone, Eugene H.; Griffin, Brian; Stewart, William; Sabik, Joseph F.; Mihaljevic, Tomislav; Svensson, Lars G.; Houghtaling, Penny L.; Lytle, Bruce W. (2010). "Surgical Repair of Posterior Mitral Valve Prolapse: Implications for Guidelines and Percutaneous Repair". The Annals of Thoracic Surgery. 89 (5): 1385–94. doi:10.1016/j.athoracsur.2009.12.070. PMID   20417750.
  5. "2011 Heart Valve Summit: Minimally Invasive Surgery - Facts". Mitral Valve Repair Center. Retrieved 2024-01-31.
  6. Mitral Valve Prolapse, Functional MR, Cardiac Surgery, Degenerative MR, and Cardiomyopathy - Evalve, Inc Archived June 8, 2007, at the Wayback Machine
  7. Phend, Crystal (22 May 2011). "HFC: Mitral Valve Clip Viable When Surgery Too Risky". MedPageToday. Retrieved 17 August 2012.
  8. Mojena Morfa, Guillermo; Taín Blázquez, Julio; Paredes Cordero, Ángel M.; Pérez López, Horacio; González González, Lisbeth (June 2008). "Cirugía valvular mitral con el corazón latiendo". Revista Cubana de Medicina. 47 (2). ISSN   0034-7523 via SciELO.
  9. "Efficacy and Safety of Beating Heart Mitral Valve Replacement". Archived from the original on 2016-03-04. Retrieved 2016-01-06.

Further reading