AB toxin

Last updated
ADPrib_exo_Tox
PDB 1giq EBI.jpg
crystal structure of the enzymatic component of iota-toxin from clostridium perfringens with nadh
Identifiers
SymbolADPrib_exo_Tox
Pfam PF03496
Pfam clan CL0084
InterPro IPR003540
SCOP2 1giq / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Binary_toxB
PDB 1tzo EBI.jpg
crystal structure of the anthrax toxin protective antigen heptameric prepore
Identifiers
SymbolBinary_toxB
Pfam PF03495
InterPro IPR003896
SCOP2 1acc / SCOPe / SUPFAM
TCDB 1.C.42
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The AB toxins are two-component protein complexes secreted by a number of pathogenic bacteria, though there is a pore-forming AB toxin found in the eggs of a snail. [1] They can be classified as Type III toxins because they interfere with internal cell function. [2] They are named AB toxins due to their components: the "A" component is usually the "active" portion, and the "B" component is usually the "binding" portion. [2] [3] The "A" subunit possesses enzyme activity, and is transferred to the host cell following a conformational change in the membrane-bound transport "B" subunit. [4] These proteins consist of two independent polypeptides, which correspond to the A/B subunit moieties. The enzyme component (A) enters the cell through endosomes produced by the oligomeric binding/translocation protein (B), and prevents actin polymerisation through ADP-ribosylation of monomeric G-actin. [4] [5] [6]

Examples of the "A" component of an AB toxin include C. perfringens iota toxin Ia, [4] C. botulinum C2 toxin CI, [5] and Clostridium difficile ADP-ribosyltransferase. [6] Other homologous proteins have been found in Clostridium spiroforme. [5] [6]

An example of the B component of an AB toxin is Bacillus anthracis protective antigen (PA) protein, [4] B. anthracis secretes three toxin factors: the protective antigen (PA); the oedema factor (EF); and the lethal factor (LF). Each is a thermolabile protein of ~80kDa. PA forms the "B" part of the exotoxin and allows passage of the "A" moiety (consisting of EF or LF) into target cells. PA protein forms the central part of the complete anthrax toxin, and translocates the A moiety into host cells after assembling as a heptamer in the membrane. [7] [8]

The Diphtheria toxin also is an AB toxin. It inhibits protein synthesis in the host cell through ADP-ribosylation of the eukaryotic elongation factor 2, which is an essential component for protein synthesis. The exotoxin A of Pseudomonas aeruginosa is another example of an AB toxin that targets the eukaryotic elongation factor 2.

The AB5 toxins are usually considered a type of AB toxin, characterized by B pentamers. Less commonly, the term "AB toxin" is used to emphasize the monomeric character of the B component.

The two-phase mechanism of action of AB toxins is of particular interest in cancer therapy research. The general idea is to modify the B component of existing toxins to selectively bind to malignant cells. This approach combines results from cancer immunotherapy with the high toxicity of AB toxins, giving raise to a new class of chimeric protein drugs, called immunotoxins. [9]

See also

Related Research Articles

<i>Clostridium perfringens</i> Species of bacterium

Clostridium perfringens is a Gram-positive, bacillus (rod-shaped), anaerobic, spore-forming pathogenic bacterium of the genus Clostridium. C. perfringens is ever-present in nature and can be found as a normal component of decaying vegetation, marine sediment, the intestinal tract of humans and other vertebrates, insects, and soil. It has the shortest reported generation time of any organism at 6.3 minutes in thioglycolate medium.

<span class="mw-page-title-main">Exotoxin</span> Toxin from bacteria that destroys or disrupts cells

An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, similar to endotoxins, may be released during lysis of the cell. Gram negative pathogens may secrete outer membrane vesicles containing lipopolysaccharide endotoxin and some virulence proteins in the bounding membrane along with some other toxins as intra-vesicular contents, thus adding a previously unforeseen dimension to the well-known eukaryote process of membrane vesicle trafficking, which is quite active at the host–pathogen interface.

<span class="mw-page-title-main">Enterotoxin</span> Toxin from a microorganism affecting the intestines

An enterotoxin is a protein exotoxin released by a microorganism that targets the intestines. They can be chromosomally or plasmid encoded. They are heat labile (>60⁰), of low molecular weight and water-soluble. Enterotoxins are frequently cytotoxic and kill cells by altering the apical membrane permeability of the mucosal (epithelial) cells of the intestinal wall. They are mostly pore-forming toxins, secreted by bacteria, that assemble to form pores in cell membranes. This causes the cells to die.

<span class="mw-page-title-main">ARF6</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor 6 (ARF6) is a member of the ADP ribosylation factor family of GTP-binding proteins. ARF6 has a variety of cellular functions that are frequently involved in trafficking of biological membranes and transmembrane protein cargo. ARF6 has specifically been implicated in endocytosis of plasma membrane proteins and also, to a lesser extent, plasma membrane protein recycling.

<span class="mw-page-title-main">Pertussis toxin</span> Group of toxins

Pertussis toxin (PT) is a protein-based AB5-type exotoxin produced by the bacterium Bordetella pertussis, which causes whooping cough. PT is involved in the colonization of the respiratory tract and the establishment of infection. Research suggests PT may have a therapeutic role in treating a number of common human ailments, including hypertension, viral infection, and autoimmunity.

Virulence factors are cellular structures, molecules and regulatory systems that enable microbial pathogens to achieve the following:

<span class="mw-page-title-main">Diphtheria toxin</span> Exotoxin

Diphtheria toxin is an exotoxin secreted mainly by Corynebacterium diphtheriae but also by Corynebacterium ulcerans and Corynebacterium pseudotuberculosis, the pathogenic bacterium that causes diphtheria. The toxin gene is encoded by a prophage called corynephage β. The toxin causes the disease in humans by gaining entry into the cell cytoplasm and inhibiting protein synthesis.

<span class="mw-page-title-main">Anthrax toxin</span> Tripartite protein complex secreted by virulent strains of Bacillus anthracis

Anthrax toxin is a three-protein exotoxin secreted by virulent strains of the bacterium, Bacillus anthracis—the causative agent of anthrax. The toxin was first discovered by Harry Smith in 1954. Anthrax toxin is composed of a cell-binding protein, known as protective antigen (PA), and two enzyme components, called edema factor (EF) and lethal factor (LF). These three protein components act together to impart their physiological effects. Assembled complexes containing the toxin components are endocytosed. In the endosome, the enzymatic components of the toxin translocate into the cytoplasm of a target cell. Once in the cytosol, the enzymatic components of the toxin disrupts various immune cell functions, namely cellular signaling and cell migration. The toxin may even induce cell lysis, as is observed for macrophage cells. Anthrax toxin allows the bacteria to evade the immune system, proliferate, and ultimately kill the host animal. Research on anthrax toxin also provides insight into the generation of macromolecular assemblies, and on protein translocation, pore formation, endocytosis, and other biochemical processes.

<span class="mw-page-title-main">Pore-forming toxin</span> Protein-produced toxins that create pores in cell membrane

Pore-forming proteins are usually produced by bacteria, and include a number of protein exotoxins but may also be produced by other organisms such as apple snails that produce perivitellin-2 or earthworms, who produce lysenin. They are frequently cytotoxic, as they create unregulated pores in the membrane of targeted cells.

The AB5 toxins are six-component protein complexes secreted by certain pathogenic bacteria known to cause human diseases such as cholera, dysentery, and hemolytic–uremic syndrome. One component is known as the A subunit, and the remaining five components are B subunits. All of these toxins share a similar structure and mechanism for entering targeted host cells. The B subunit is responsible for binding to receptors to open up a pathway for the A subunit to enter the cell. The A subunit is then able to use its catalytic machinery to take over the host cell's regular functions.

<span class="mw-page-title-main">ADP-ribosylation</span> Addition of one or more ADP-ribose moieties to a protein.

ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Improper ADP-ribosylation has been implicated in some forms of cancer. It is also the basis for the toxicity of bacterial compounds such as cholera toxin, diphtheria toxin, and others.

<span class="mw-page-title-main">ARF1</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor 1 is a protein that in humans is encoded by the ARF1 gene.

In enzymology, a NAD+-diphthamide ADP-ribosyltransferase (EC 2.4.2.36) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Zinc-dependent phospholipase C</span>

In molecular biology, zinc-dependent phospholipases C is a family of bacterial phospholipases C enzymes, some of which are also known as alpha toxins.

<span class="mw-page-title-main">ARF4</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor 4 is a protein that in humans is encoded by the ARF4 gene.

<i>Bacillus anthracis</i> Species of bacterium

Bacillus anthracis is a gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent (obligate) pathogen within the genus Bacillus. Its infection is a type of zoonosis, as it is transmitted from animals to humans. It was discovered by a German physician Robert Koch in 1876, and became the first bacterium to be experimentally shown as a pathogen. The discovery was also the first scientific evidence for the germ theory of diseases.

<span class="mw-page-title-main">Clostridium enterotoxin</span>

Clostridium enterotoxins are toxins produced by Clostridium species. Clostridial species are one of the major causes of food poisoning/gastrointestinal illnesses. They are anaerobic, gram-positive, spore-forming rods that occur naturally in the soil. Among the family are: Clostridium botulinum, which produces one of the most potent toxins in existence; Clostridium tetani, causative agent of tetanus; and Clostridium perfringens, commonly found in wound infections and diarrhea cases.

<span class="mw-page-title-main">Pseudomonas exotoxin</span> Exotoxin produced by Pseudomonas aeruginosa

The Pseudomonas exotoxin is an exotoxin produced by Pseudomonas aeruginosa. Vibrio cholerae produces a similar protein called the Cholix toxin.

Microbial toxins are toxins produced by micro-organisms, including bacteria, fungi, protozoa, dinoflagellates, and viruses. Many microbial toxins promote infection and disease by directly damaging host tissues and by disabling the immune system. Endotoxins most commonly refer to the lipopolysaccharide (LPS) or lipooligosaccharide (LOS) that are in the outer plasma membrane of Gram-negative bacteria. The botulinum toxin, which is primarily produced by Clostridium botulinum and less frequently by other Clostridium species, is the most toxic substance known in the world. However, microbial toxins also have important uses in medical science and research. Currently, new methods of detecting bacterial toxins are being developed to better isolate and understand these toxins. Potential applications of toxin research include combating microbial virulence, the development of novel anticancer drugs and other medicines, and the use of toxins as tools in neurobiology and cellular biology.

<span class="mw-page-title-main">Clostridium botulinum C3 toxin</span>

Clostridium botulinum C3 exoenzyme is a toxin that causes the addition of one or more ADP-ribose moieties to Rho-like proteins. Many bacterial toxins nucleotide-binding modify by ADP-ribosylation proteins involved in essential cell functions, leading to their toxic effects.

References

  1. Giglio, M.L.; Ituarte, S.; Milesi, V.; Dreon, M.S.; Brola, T.R.; Caramelo, J.; Ip, J.C.H.; Maté, S.; Qiu, J.W.; Otero, L.H.; Heras, H. (August 2020). "Exaptation of two ancient immune proteins into a new dimeric pore-forming toxin in snails". Journal of Structural Biology. 211 (2): 107531. doi:10.1016/j.jsb.2020.107531. hdl: 11336/143650 . PMID   32446810.
  2. 1 2 "Bacterial Pathogenesis: Bacterial Factors that Damage the Host - Producing Exotoxins - A-B Toxins". Archived from the original on 2010-07-27. Retrieved 2008-12-13.
  3. De Haan L, Hirst TR (2004). "Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review)". Mol. Membr. Biol. 21 (2): 77–92. doi: 10.1080/09687680410001663267 . PMID   15204437. S2CID   22270979.
  4. 1 2 3 4 Perelle S, Gibert M, Boquet P, Popoff MR (December 1993). "Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli". Infect. Immun. 61 (12): 5147–56. doi:10.1128/IAI.61.12.5147-5156.1993. PMC   281295 . PMID   8225592.
  5. 1 2 3 Fujii N, Kubota T, Shirakawa S, Kimura K, Ohishi I, Moriishi K, Isogai E, Isogai H (March 1996). "Characterization of component-I gene of botulinum C2 toxin and PCR detection of its gene in clostridial species". Biochem. Biophys. Res. Commun. 220 (2): 353–9. doi:10.1006/bbrc.1996.0409. PMID   8645309.
  6. 1 2 3 Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M (May 2000). "Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile". FEMS Microbiol. Lett. 186 (2): 307–12. doi: 10.1111/j.1574-6968.2000.tb09122.x . PMID   10802189.
  7. Pezard C, Berche P, Mock M (October 1991). "Contribution of individual toxin components to virulence of Bacillus anthracis". Infect. Immun. 59 (10): 3472–7. doi:10.1128/IAI.59.10.3472-3477.1991. PMC   258908 . PMID   1910002.
  8. Welkos SL, Lowe JR, Eden-McCutchan F, Vodkin M, Leppla SH, Schmidt JJ (September 1988). "Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis". Gene. 69 (2): 287–300. doi:10.1016/0378-1119(88)90439-8. PMID   3148491. Archived from the original on September 23, 2017.
  9. Zahaf N, Schmidt G (2017-07-18). "Bacterial Toxins for Cancer Therapy". Toxins (Basel). 9 (8): 236. doi: 10.3390/toxins9080236 . PMC   5577570 . PMID   28788054.
This article incorporates text from the public domain Pfam and InterPro: IPR003540
This article incorporates text from the public domain Pfam and InterPro: IPR003896