Xenobiotic-sensing receptor

Last updated

A xenobiotic-sensing receptor is a receptor that binds xenobiotics. [1] They include the following nuclear receptors: [1]

CAR and PXR are xenobiotic receptors and they both are members of NR1I nuclear receptor family. The regulate the metabolic pathway for the elimination of cholesterol. However, there is no physiological ligands was identified. [2] Xenobiotic receptors recognize the foreign chemicals and trigger detoxification and metabolism pathways in different host tissues. [3]

Functions

Several genes involved in cytochrome P450, phase I, and glucuronosyltransferases conjugation catalysis in phase II are regulated by phenobarbital(PB) as well the transport mediated pathways of drug elimination. Induction of PB in xenobiotic-metabolizes of cytochromes CYP2b undergoes a transcriptional process, thus raising mRNA levels. [2] Expression of the CAR summarized in a UniGene database, mainly in the kidney, liver, sometimes in the heart, GI tissues, and the human brain tissues. PB in the past ten years has been shown as an enhancer that is responsive to human(PBREM), rat(CYP2B), and the mouse; Constitutive Activated Receptor(CAR) identified was depicted to bind DR-4 motifs. The circulating thyroid hormone levels can be regulated by CAR. TH pathways of conjugation can be induced in PB treatment in a way that can lead to reductions that are fast-induced in T4 levels and serum triiodothyronine and finished serum thyroxine(T4).

Phase II and I enzymes PXR carries out induction. Expression of PXR is mainly evident in the liver, testis, human embryonic tissues, GI tract, and liver of the mouse. Research carried out on macrolide antibiotics, and glucocorticoids induction of CYP3A were perceived to utilize glucocorticoid receptor. This was explained by the induction of the CYP3A relationships obtained from the steroid structure-activity evaluation results. Research conducted in 1998 said that PXR was responsible for the induction of CYP3A and differences in the species in the induction of CYP3A by RIF and PCN. Based on this and other investigations, PXR has been perceived as a xenobiotic regulation mediator of CYP3A.

CAR has been depicted to be linked with a cofactor transcriptional induced by homeostasis energy regulation and fasting. Hemostasis of BA also aids in keeping the correct cholesterol levels. CAR can also impact gluconeogenesis regulation mediated by a transcription factor; the transcription factor binding can be regulated to Insulin Response Sequence(IRS). PXR protects the body from bile acid toxicity. Regarding the cholesterol levels regulation by CAR, PXR-null mice pretreatment using TCPOBOP does not reduce danger to cholesterol; therefore, toxicity from cholesterol can be controlled using PXR.

Related Research Articles

<span class="mw-page-title-main">Progesterone</span> Sex hormone

Progesterone (P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens and is the major progestogen in the body. Progesterone has a variety of important functions in the body. It is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid.

<span class="mw-page-title-main">Steroid hormone</span> Substance with biological function

A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids and sex steroids. Within those two classes are five types according to the receptors to which they bind: glucocorticoids and mineralocorticoids and androgens, estrogens, and progestogens. Vitamin D derivatives are a sixth closely related hormone system with homologous receptors. They have some of the characteristics of true steroids as receptor ligands.

<span class="mw-page-title-main">CYP3A4</span> Enzyme which breaks down foreign organic molecules

Cytochrome P450 3A4 is an important enzyme in the body, mainly found in the liver and in the intestine. It oxidizes small foreign organic molecules (xenobiotics), such as toxins or drugs, so that they can be removed from the body. It is highly homologous to CYP3A5, another important CYP3A enzyme.

<span class="mw-page-title-main">Pregnenolone</span> Chemical compound

Pregnenolone (P5), or pregn-5-en-3β-ol-20-one, is an endogenous steroid and precursor/metabolic intermediate in the biosynthesis of most of the steroid hormones, including the progestogens, androgens, estrogens, glucocorticoids, and mineralocorticoids. In addition, pregnenolone is biologically active in its own right, acting as a neurosteroid.

In humans and other animals, the adrenocortical hormones are hormones produced by the adrenal cortex, the outer region of the adrenal gland. These polycyclic steroid hormones have a variety of roles that are crucial for the body’s response to stress, and they also regulate other functions in the body. Threats to homeostasis, such as injury, chemical imbalances, infection, or psychological stress, can initiate a stress response. Examples of adrenocortical hormones that are involved in the stress response are aldosterone and cortisol. These hormones also function in regulating the conservation of water by the kidneys and glucose metabolism, respectively.

<span class="mw-page-title-main">Aryl hydrocarbon receptor</span> Vertebrate transcription factor

The aryl hydrocarbon receptor is a protein that in humans is encoded by the AHR gene. The aryl hydrocarbon receptor is a transcription factor that regulates gene expression. It was originally thought to function primarily as a sensor of xenobiotic chemicals and also as the regulator of enzymes such as cytochrome P450s that metabolize these chemicals. The most notable of these xenobiotic chemicals are aromatic (aryl) hydrocarbons from which the receptor derives its name.

<span class="mw-page-title-main">Farnesoid X receptor</span> Protein-coding gene in the species Homo sapiens

The bile acid receptor (BAR), also known as farnesoid X receptor (FXR) or NR1H4, is a nuclear receptor that is encoded by the NR1H4 gene in humans.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Pregnane X receptor</span> Mammalian protein found in Homo sapiens

In the field of molecular biology, the pregnane X receptor (PXR), also known as the steroid and xenobiotic sensing nuclear receptor (SXR) or nuclear receptor subfamily 1, group I, member 2 (NR1I2) is a protein that in humans is encoded by the NR1I2 gene.

<span class="mw-page-title-main">Constitutive androstane receptor</span> Protein-coding gene in humans

The constitutive androstane receptor (CAR) also known as nuclear receptor subfamily 1, group I, member 3 is a protein that in humans is encoded by the NR1I3 gene. CAR is a member of the nuclear receptor superfamily and along with pregnane X receptor (PXR) functions as a sensor of endobiotic and xenobiotic substances. In response, expression of proteins responsible for the metabolism and excretion of these substances is upregulated. Hence, CAR and PXR play a major role in the detoxification of foreign substances such as drugs.

<span class="mw-page-title-main">Cholesterol side-chain cleavage enzyme</span> Mammalian protein found in Homo sapiens

Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.

<span class="mw-page-title-main">Guggulsterone</span> Chemical compound

Guggulsterone is a phytosteroid found in the resin of the guggul plant, Commiphora mukul. Guggulsterone can exist as either of two stereoisomers, E-guggulsterone and Z-guggulsterone. In humans, it acts as an antagonist of the farnesoid X receptor, which was once believed to result in decreased cholesterol synthesis in the liver. Several studies have been published that indicate no overall reduction in total cholesterol occurs using various dosages of guggulsterone, and levels of low-density lipoprotein increased in many people. Nevertheless, guggulsterone is an ingredient in many nutritional supplements. Guggulsterone was also found to have interactions with the viral Adipose Ribose Phosphatase enzyme of SARS-CoV2 and can prove to be a potential candidate for the development of therapeutics for the treatment of COVID19.

<span class="mw-page-title-main">Cholesterol 7 alpha-hydroxylase</span> Protein-coding gene in the species Homo sapiens

Cholesterol 7 alpha-hydroxylase also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1) is an enzyme that in humans is encoded by the CYP7A1 gene which has an important role in cholesterol metabolism. It is a cytochrome P450 enzyme, which belongs to the oxidoreductase class, and converts cholesterol to 7-alpha-hydroxycholesterol, the first and rate limiting step in bile acid synthesis.

<span class="mw-page-title-main">Estrogen-related receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.

<span class="mw-page-title-main">CYP3A5</span> Enzyme involved in drug metabolism

Cytochrome P450 3A5 is a protein that in humans is encoded by the CYP3A5 gene.

<span class="mw-page-title-main">PGRMC1</span> Protein-coding gene in the species Homo sapiens

Progesterone receptor membrane component 1 is a protein which co-purifies with progesterone binding proteins in the liver and ovary. In humans, the PGRMC1 protein is encoded by the PGRMC1 gene.

<span class="mw-page-title-main">5α-Dihydroprogesterone</span> Chemical compound

5α-Dihydroprogesterone is an endogenous progestogen and neurosteroid that is synthesized from progesterone. It is also an intermediate in the synthesis of allopregnanolone and isopregnanolone from progesterone.

<span class="mw-page-title-main">5β-Dihydroprogesterone</span> Chemical compound

5β-Dihydroprogesterone is an endogenous neurosteroid and an intermediate in the biosynthesis of pregnanolone and epipregnanolone from progesterone. It is synthesized from progesterone by the enzyme 5β-reductase.

<span class="mw-page-title-main">Hydroxylation of estradiol</span>

The hydroxylation of estradiol is one of the major routes of metabolism of the estrogen steroid hormone estradiol. It is hydroxylated into the catechol estrogens 2-hydroxyestradiol and 4-hydroxyestradiol and into estriol (16α-hydroxyestradiol), reactions which are catalyzed by cytochrome P450 enzymes predominantly in the liver, but also in various other tissues.

Ilya Borisovich Tsyrlov is a Russian-American biochemist, molecular toxicologist and virologist. He is known for his studies and research on enzymology, drug metabolism, environmental toxicology, bioinformatics, virology, and cancer. Tsyrlov has authored 4 monographs, and co-authored over 280 publications on microsomal, purified and recombinant monooxygenases, and mechanisms of CYP induction by xenobiotics.

References

  1. 1 2 Timsit YE, Negishi M (March 2007). "CAR and PXR: the xenobiotic-sensing receptors". Steroids. 72 (3): 231–46. doi:10.1016/j.steroids.2006.12.006. PMC   1950246 . PMID   17284330.
  2. 1 2 Klaassen C, Lu H (2010). "Xenobiotic Receptors CAR and PXR". Nuclear Receptors. Dordrecht: Springer Netherlands. pp. 287–305. doi:10.1007/978-90-481-3303-1_11. ISBN   978-90-481-3302-4.
  3. Erickson SL, Alston L, Nieves K, Chang TK, Mani S, Flannigan KL, Hirota SA (February 2020). "The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by C difficile toxins". FASEB Journal. 34 (2): 2198–2212. doi: 10.1096/fj.201902083rr . PMC   7027580 . PMID   31907988.