Signal transducer and activator of transcription 4 (STAT4) is a transcription factor belonging to the STAT protein family, composed of STAT1, STAT2, STAT3, STAT5A, STAT5B, STAT6. [5] STAT proteins are key activators of gene transcription which bind to DNA in response to cytokine gradient. [6] STAT proteins are a common part of Janus kinase (JAK)- signalling pathways, activated by cytokines.STAT4 is required for the development of Th1 cells from naive CD4+ T cells [7] and IFN-γ production in response to IL-12. [8] There are two known STAT4 transcripts, STAT4α and STAT4β, differing in the levels of interferon-gamma (IFN-γ )production downstream. [9]
Human as well murine STAT4 genes lie next to STAT1 gene locus suggesting that the genes arose by gene duplication. [5] STAT proteins have six functional domains: 1. N-terminal interaction domain – crucial for dimerization of inactive STATs and nuclear translocation; 2.helical coiled coil domain – association with regulatory factors; 3. central DNA-binding domain – binding to the enhancer region of IFN-γ activated sequence (GAS) family genes; 4. linker domain – assisting during the DNA binding process; 5. Src homology 2 (SH2) domain – critical for specific binding to the cytokine receptor after tyrosine phosphorylation; 6. C-terminal transactivation domain – triggering the transcriptional process. [10] [11] The length of the protein is 748 amino acids, and the molecular weight is 85 941 Dalton. [12]
Distribution of STAT4 is restricted to myeloid cells, thymus and testis. [5] In resting human T cells it is expressed at very low levels, but its production is amplified by PHA stimulation. [8]
Pro-inflammatory cytokine IL-12 is produced in heterodimer form by B cells and antigen-presenting cells. Binding of IL-12 to IL-12R, which is composed of two different subunits (IL12Rβ1 and IL12Rβ2), leads to the interaction of IL12Rβ1 and IL12Rβ2 with JAK2 and TYK2, which is followed by phosphorylation of STAT4 tyrosine 693. The pathway then induces IFNγ production and Th1 differentiation. STAT4 is critical in promotion of antiviral response of natural killer (NK) cell by targeting of promotor regions of Runx1 and Runx3. [13]
Secreted by leukocytes, respectively fibroblasts, IFNα IFNβ together regulate antiviral immunity, cell proliferation and anti-tumor effects. [14] In viral infection signalling pathway, either of IFNα or β binds to IFN receptor (IFNAR), composed of IFNAR1 and IFNAR2, immediately followed by the phosphorylation of STAT1, STAT4 and IFN target genes. [15] During the initial phase of viral infection in NK cells, STAT1 activation is replaced by the activation of STAT4.
Monocytes, activated dendritic cells (DC) and macrophages stimulate the accumulation of IL-23 after exposure to molecules of Gram-positive/negative bacteria or viruses. Receptor for IL-23 contains IL12β1 and IL23R subunits, which upon binding of IL-23 promotes the phosphorylation STAT4. The presence of IL12β1 enables similar, although weaker downstream activity as compared to IL-12. During chronic inflammation, IL-23/STAT4 signalling pathway is involved in the induction of differentiation and expansion of Th17 pro-inflammatory T helper cells. [16]
Additionally, other cytokines like IL2, IL 27, IL35, IL18 and IL21 are known to activate STAT4.
In cells with progressively increasing expression of IL12 and IL6, SOCSs production and activity suppress cytokine signalling and phosphorylation of JAK-STAT pathways in a negative feedback loop. [17]
Other suppressors of the pathways are: protein inhibitor of activated STAT (PAIS) (regulation of transcriptional activity in the nucleus, observed in STAT4-DNA binding complex), protein tyrosine phosphatase (PTP) (removal of phosphate groups from phosphorylated tyrosine in JAK/STAT pathway proteins), STAT-interacting LIM protein (SLIM) (STAT ubiquitin E3 ligase blocking the phosphorylation of STAT4) or microRNA (miRNA) (degradation of STAT4 mRNA and its post-transcriptional regulation). [11]
STAT4 binds to hundreds of sites in the genome, [18] among others to the promoters of genes for cytokines (IFN-γ, TNF), receptors (IL18R1, IL12rβ2, IL18RAP), and signaling factors (MYD88). [18]
STAT4 is involved in several autoimmune and cancer diseases in animal models humans, significantly in the disease progression and pathology. STAT4 were significantly increased in patients with colitis ulcerative [19] and skin T cells of psoriatic patients. [20] Moreover, STAT4 -/- mice developed less severe experimental autoimmune encephalo-myelitis (EAE) than the wild type mice. [21] [22]
Intronic single nucleotide polymorphism (SNP) mostly in third intron of the STAT4 has shown to be associated with immune dysregulation and autoimmunity including systemic lupus erythematosus (SLE) [23] and rheumatoid arthritis [24] as well as Sjögren's disease (SD), [25] systemic sclerosis, [26] psoriasis [27] and also type-1 diabetes. [28] High incident of STAT4 genetic polymorphisms and susceptibility to autoimmune diseases is a reason to consider the STAT4 as general autoimmune disease susceptibility locus. [29]
Interferons are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten their anti-viral defenses.
Janus kinase (JAK) is a family of intracellular, non-receptor tyrosine kinases that transduce cytokine-mediated signals via the JAK-STAT pathway. They were initially named "just another kinase" 1 and 2, but were ultimately published as "Janus kinase". The name is taken from the two-faced Roman god of beginnings, endings and duality, Janus, because the JAKs possess two near-identical phosphate-transferring domains. One domain exhibits the kinase activity, while the other negatively regulates the kinase activity of the first.
The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors. Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system.
Interleukin 12 (IL-12) is an interleukin that is naturally produced by dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) in response to antigenic stimulation. IL-12 belongs to the family of interleukin-12. IL-12 family is unique in comprising the only heterodimeric cytokines, which includes IL-12, IL-23, IL-27 and IL-35. Despite sharing many structural features and molecular partners, they mediate surprisingly diverse functional effects.
Members of the signal transducer and activator of transcription (STAT) protein family are intracellular transcription factors that mediate many aspects of cellular immunity, proliferation, apoptosis and differentiation. They are primarily activated by membrane receptor-associated Janus kinases (JAK). Dysregulation of this pathway is frequently observed in primary tumors and leads to increased angiogenesis which enhances the survival of tumors and immunosuppression. Gene knockout studies have provided evidence that STAT proteins are involved in the development and function of the immune system and play a role in maintaining immune tolerance and tumor surveillance.
Interferon gamma (IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. Wheelock as a product of human leukocytes stimulated with phytohemagglutinin, and by others as a product of antigen-stimulated lymphocytes. It was also shown to be produced in human lymphocytes. or tuberculin-sensitized mouse peritoneal lymphocytes challenged with Mantoux test (PPD); the resulting supernatants were shown to inhibit growth of vesicular stomatitis virus. Those reports also contained the basic observation underlying the now widely employed IFN-γ release assay used to test for tuberculosis. In humans, the IFN-γ protein is encoded by the IFNG gene.
The interleukin-2 receptor (IL-2R) is a heterotrimeric protein expressed on the surface of certain immune cells, such as lymphocytes, that binds and responds to a cytokine called IL-2.
Type II cytokine receptors, also commonly known as class II cytokine receptors, are transmembrane proteins that are expressed on the surface of certain cells. They bind and respond to a select group of cytokines including interferon type I, interferon type II, interferon type III. and members of the interleukin-10 family These receptors are characterized by the lack of a WSXWS motif which differentiates them from type I cytokine receptors.
The interferon-α/β receptor (IFNAR) is a virtually ubiquitous membrane receptor which binds endogenous type I interferon (IFN) cytokines. Endogenous human type I IFNs include many subtypes, such as interferons-α, -β, -ε, -κ, -ω, and -ζ.
The interferon-gamma receptor (IFNGR) protein complex is the heterodimer of two chains: IFNGR1 and IFNGR2. It binds interferon-γ, the sole member of interferon type II.
Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the STAT1 gene. It is a member of the STAT protein family.
Non-receptor tyrosine-protein kinase TYK2 is an enzyme that in humans is encoded by the TYK2 gene.
Tyrosine-protein kinase JAK3 is a tyrosine kinase enzyme that in humans is encoded by the JAK3 gene.
JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.
Signal transducer and activator of transcription 6 (STAT6) is a transcription factor that belongs to the Signal Transducer and Activator of Transcription (STAT) family of proteins. The proteins of STAT family transmit signals from a receptor complex to the nucleus and activate gene expression. Similarly as other STAT family proteins, STAT6 is also activated by growth factors and cytokines. STAT6 is mainly activated by cytokines interleukin-4 and interleukin-13.
Interferon alpha-1 is a protein that in humans is encoded by the IFNA1 gene.
Interferon alpha-2 is a protein that in humans is encoded by the IFNA2 gene.
Interferon regulatory factor 5 is a protein that in humans is encoded by the IRF5 gene. The IRF family is a group of transcription factors that are involved in signaling for virus responses in mammals along with regulation of certain cellular functions.
Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.
The interleukin-1 receptor (IL-1R) associated kinase (IRAK) family plays a crucial role in the protective response to pathogens introduced into the human body by inducing acute inflammation followed by additional adaptive immune responses. IRAKs are essential components of the Interleukin-1 receptor signaling pathway and some Toll-like receptor signaling pathways. Toll-like receptors (TLRs) detect microorganisms by recognizing specific pathogen-associated molecular patterns (PAMPs) and IL-1R family members respond the interleukin-1 (IL-1) family cytokines. These receptors initiate an intracellular signaling cascade through adaptor proteins, primarily, MyD88. This is followed by the activation of IRAKs. TLRs and IL-1R members have a highly conserved amino acid sequence in their cytoplasmic domain called the Toll/Interleukin-1 (TIR) domain. The elicitation of different TLRs/IL-1Rs results in similar signaling cascades due to their homologous TIR motif leading to the activation of mitogen-activated protein kinases (MAPKs) and the IκB kinase (IKK) complex, which initiates a nuclear factor-κB (NF-κB) and AP-1-dependent transcriptional response of pro-inflammatory genes. Understanding the key players and their roles in the TLR/IL-1R pathway is important because the presence of mutations causing the abnormal regulation of Toll/IL-1R signaling leading to a variety of acute inflammatory and autoimmune diseases.