STAT5B

Last updated
STAT5B
Protein STAT5B PDB 1y1u.png
Identifiers
Aliases STAT5B , STAT5, signal transducer and activator of transcription 5B, GHISID2
External IDs OMIM: 604260 MGI: 103035 HomoloGene: 55718 GeneCards: STAT5B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_012448

NM_001113563
NM_011489
NM_001362682

RefSeq (protein)

NP_036580

NP_001107035
NP_035619
NP_001349611

Location (UCSC) Chr 17: 42.2 – 42.28 Mb Chr 11: 100.67 – 100.74 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Signal transducer and activator of transcription 5B is a protein that in humans is encoded by the STAT5B gene. [5] STAT5B orthologs [6] have been identified in most placentals for which complete genome data are available.

Contents

Function

The protein encoded by this gene is a member of the STAT family of transcription factors. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators. This protein mediates the signal transduction triggered by various cell ligands, such as IL2, IL4, CSF1, and different growth hormones. It has been shown to be involved in diverse biological processes, such as TCR signaling, apoptosis, adult mammary gland development, and sexual dimorphism of liver gene expression. This gene was found to fuse to retinoic acid receptor-alpha (RARA) gene in a small subset of acute promyelocytic leukemias (APML). The dysregulation of the signaling pathways mediated by this protein may be the cause of the APML. [7]

Interactions

STAT5B has been shown to interact with:

See also

Related Research Articles

The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors. Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system.

<span class="mw-page-title-main">STAT protein</span> Family of intracellular transcription factors

Members of the signal transducer and activator of transcription (STAT) protein family are intracellular transcription factors that mediate many aspects of cellular immunity, proliferation, apoptosis and differentiation. They are primarily activated by membrane receptor-associated Janus kinases (JAK). Dysregulation of this pathway is frequently observed in primary tumors and leads to increased angiogenesis which enhances the survival of tumors and immunosuppression. Gene knockout studies have provided evidence that STAT proteins are involved in the development and function of the immune system and play a role in maintaining immune tolerance and tumor surveillance.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of tall cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">STAT5</span> Protein family

Signal transducer and activator of transcription 5 (STAT5) refers to two highly related proteins, STAT5A and STAT5B, which are part of the seven-membered STAT family of proteins. Though STAT5A and STAT5B are encoded by separate genes, the proteins are 90% identical at the amino acid level. STAT5 proteins are involved in cytosolic signalling and in mediating the expression of specific genes. Aberrant STAT5 activity has been shown to be closely connected to a wide range of human cancers, and silencing this aberrant activity is an area of active research in medicinal chemistry.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">Janus kinase 2</span> Non-receptor tyrosine kinase and coding gene in humans

Janus kinase 2 is a non-receptor tyrosine kinase. It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors.

<span class="mw-page-title-main">Janus kinase 1</span>

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

<span class="mw-page-title-main">STAT6</span> Protein and coding gene in humans

Signal transducer and activator of transcription 6 (STAT6) is a transcription factor that belongs to the Signal Transducer and Activator of Transcription (STAT) family of proteins. The proteins of STAT family transmit signals from a receptor complex to the nucleus and activate gene expression. Similarly as other STAT family proteins, STAT6 is also activated by growth factors and cytokines. STAT6 is mainly activated by cytokines interleukin-4 and interleukin-13.

<span class="mw-page-title-main">MAPK8</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 8 is a ubiquitous enzyme that in humans is encoded by the MAPK8 gene.

<span class="mw-page-title-main">PTPN6</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 6, also known as Src homology region 2 domain-containing phosphatase-1 (SHP-1), is an enzyme that in humans is encoded by the PTPN6 gene.

<span class="mw-page-title-main">SOCS3</span> Protein

Suppressor of cytokine signaling 3 is a protein that in humans is encoded by the SOCS3 gene. This gene encodes a member of the STAT-induced STAT inhibitor (SSI), also known as suppressor of cytokine signaling (SOCS), family. SSI family members are cytokine-inducible negative regulators of cytokine signaling.

<span class="mw-page-title-main">STAT5A</span> Protein-coding gene in the species Homo sapiens

Signal transducer and activator of transcription 5A is a protein that in humans is encoded by the STAT5A gene. STAT5A orthologs have been identified in several placentals for which complete genome data are available.

<span class="mw-page-title-main">MAP2K3</span> Protein-coding gene in the species Homo sapiens

Dual specificity mitogen-activated protein kinase kinase 3 is an enzyme that in humans is encoded by the MAP2K3 gene.

<span class="mw-page-title-main">IFNAR2</span> Protein-coding gene in the species Homo sapiens

Interferon-alpha/beta receptor beta chain is a protein that in humans is encoded by the IFNAR2 gene.

<span class="mw-page-title-main">PIAS4</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS4 is one of several protein inhibitor of activated STAT (PIAS) proteins. It is also known as protein inhibitor of activated STAT protein gamma, and is an enzyme that in humans is encoded by the PIAS4 gene.

<span class="mw-page-title-main">PIAS1</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS1 is an enzyme that in humans is encoded by the PIAS1 gene.

<span class="mw-page-title-main">Protein inhibitor of activated STAT2</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS2 is an enzyme that in humans is encoded by the PIAS2 gene.

<span class="mw-page-title-main">RPS6KA2</span> Enzyme found in humans

Ribosomal protein S6 kinase alpha-2 is an enzyme that in humans is encoded by the RPS6KA2 gene.

<span class="mw-page-title-main">IRF5</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 5 is a protein that in humans is encoded by the IRF5 gene. The IRF family is a group of transcription factors that are involved in signaling for virus responses in mammals along with regulation of certain cellular functions.

<span class="mw-page-title-main">Interleukin 13 receptor, alpha 1</span> Protein-coding gene in the species Homo sapiens

Interleukin 13 receptor, alpha 1, also known as IL13RA1 and CD213A1, is a human gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000173757 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000020919 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lin JX, Mietz J, Modi WS, John S, Leonard WJ (July 1996). "Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells". J. Biol. Chem. 271 (18): 10738–44. doi: 10.1074/jbc.271.18.10738 . PMID   8631883.
  6. "OrthoMaM phylogenetic marker: STAT5B coding sequence". Archived from the original on 2015-09-24. Retrieved 2010-02-17.
  7. "Entrez Gene: STAT5B signal transducer and activator of transcription 5B".
  8. Stöcklin E, Wissler M, Gouilleux F, Groner B (October 1996). "Functional interactions between Stat5 and the glucocorticoid receptor" (PDF). Nature. 383 (6602): 726–8. Bibcode:1996Natur.383..726S. doi:10.1038/383726a0. PMID   8878484. S2CID   4356272.
  9. 1 2 Fujitani Y, Hibi M, Fukada T, Takahashi-Tezuka M, Yoshida H, Yamaguchi T, Sugiyama K, Yamanaka Y, Nakajima K, Hirano T (February 1997). "An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT". Oncogene. 14 (7): 751–61. doi:10.1038/sj.onc.1200907. PMID   9047382. S2CID   20789082.
  10. Barahmand-Pour F, Meinke A, Groner B, Decker T (May 1998). "Jak2-Stat5 interactions analyzed in yeast". J. Biol. Chem. 273 (20): 12567–75. doi: 10.1074/jbc.273.20.12567 . PMID   9575217.
  11. Yu CL, Jin YJ, Burakoff SJ (January 2000). "Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation". J. Biol. Chem. 275 (1): 599–604. doi: 10.1074/jbc.275.1.599 . PMID   10617656.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.