Cytokine receptor

Last updated
Key steps of the JAK-STAT pathway for type 1 and 2 cytokine receptors Jakstat pathway.svg
Key steps of the JAK-STAT pathway for type 1 and 2 cytokine receptors
Signal transduction. (Cytokine receptor at center left.) Signal transduction pathways.svg
Signal transduction. (Cytokine receptor at center left.)

Cytokine receptors are receptors that bind to cytokines. [1]

Contents

In recent years, the cytokine receptors have come to demand the attention of more investigators than cytokines themselves, partly because of their remarkable characteristics, and partly because a deficiency of cytokine receptors has now been directly linked to certain debilitating immunodeficiency states. In this regard, and also because the redundancy and pleiotropy of cytokines are a consequence of their homologous receptors, many authorities are now of the opinion that a classification of cytokine receptors would be more clinically and experimentally useful.

Classification

A classification of cytokine receptors based on their three-dimensional structure has been attempted. (Such a classification, though seemingly cumbersome, provides several unique perspectives for attractive pharmacotherapeutic targets.)

Comparison

TypeExamplesStructureMechanism
type I cytokine receptor Certain conserved motifs in their extracellular amino-acid domain. Connected to Janus kinase (JAK) family of tyrosine kinases. Many have a FN-III superfamily domain and an immunoglobulin-like fold.JAK phosphorylate and activate downstream proteins involved in their signal transduction pathways
type II cytokine receptor
Many members of the immunoglobulin superfamily Share structural homology with immunoglobulins (antibodies), cell adhesion molecules, and even some cytokine. Includes with the two classes above.
Tumor necrosis factor receptor family cysteine-rich common extracellular binding domain
chemokine receptors Seven transmembrane helix, rhodopsin-like receptor [2] G protein-coupled
TGF-beta receptor family Serine/threonine kinase receptors Dimeric TGFBR2 binds to TGFB and phosphorylates TGFBR1, which phosphorylates the SMADs. See TGF beta signaling pathway.

Solubility

Cytokine receptors may be both membrane-bound and soluble. Soluble cytokine receptors are extremely common regulators of cytokine function. Soluble cytokine receptors typically consist of the extracellular portions of membrane-bound receptors. . [3]

See also

Related Research Articles

<span class="mw-page-title-main">Integrin</span> Instance of a defined set in Homo sapiens with Reactome ID (R-HSA-374573)

Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

<span class="mw-page-title-main">Cytokine</span> Broad and loose category of small proteins important in cell signaling

Cytokines are a broad and loose category of small proteins important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrine, paracrine and endocrine signaling as immunomodulating agents.

A hormone receptor is a receptor molecule that binds to a specific chemical messenger. Hormone receptors are a wide family of proteins made up of receptors for thyroid and steroid hormones, retinoids and Vitamin D, and a variety of other receptors for various ligands, such as fatty acids and prostaglandins. Hormone receptors are of mainly two classes. Receptors for peptide hormones tend to be cell surface receptors built into the plasma membrane of cells and are thus referred to as trans membrane receptors. An example of this is Actrapid. Receptors for steroid hormones are usually found within the protoplasm and are referred to as intracellular or nuclear receptors, such as testosterone. Upon hormone binding, the receptor can initiate multiple signaling pathways, which ultimately leads to changes in the behavior of the target cells.

A co-receptor is a cell surface receptor that binds a signalling molecule in addition to a primary receptor in order to facilitate ligand recognition and initiate biological processes, such as entry of a pathogen into a host cell.

<span class="mw-page-title-main">Common gamma chain</span> Protein-coding gene in the species Homo sapiens

The common gamma chainc), also known as interleukin-2 receptor subunit gamma or IL-2RG, is a cytokine receptor sub-unit that is common to the receptor complexes for at least six different interleukin receptors: IL-2, IL-4, IL-7, IL-9, IL-15 and interleukin-21 receptor. The γc glycoprotein is a member of the type I cytokine receptor family expressed on most lymphocyte populations, and its gene is found on the X-chromosome of mammals.

<span class="mw-page-title-main">Juxtacrine signalling</span> Contact-based cell-cell signalling

In biology, juxtacrine signalling is a type of cell–cell or cell–extracellular matrix signalling in multicellular organisms that requires close contact. In this type of signalling, a ligand on one surface binds to a receptor on another adjacent surface. Hence, this stands in contrast to releasing a signaling molecule by diffusion into extracellular space, the use of long-range conduits like membrane nanotubes and cytonemes or the use of extracellular vesicles like exosomes or microvesicles. There are three types of juxtacrine signaling:

  1. A membrane-bound ligand and a membrane protein of two adjacent cells interact.
  2. A communicating junction links the intracellular compartments of two adjacent cells, allowing transit of relatively small molecules.
  3. An extracellular matrix glycoprotein and a membrane protein interact.

The transforming growth factor beta (TGFB) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, cell migration, apoptosis, cellular homeostasis and other cellular functions. The TGFB signaling pathways are conserved. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression.

<span class="mw-page-title-main">Chemokine receptor</span> Cytokine receptor

Chemokine receptors are cytokine receptors found on the surface of certain cells that interact with a type of cytokine called a chemokine. There have been 20 distinct chemokine receptors discovered in humans. Each has a rhodopsin-like 7-transmembrane (7TM) structure and couples to G-protein for signal transduction within a cell, making them members of a large protein family of G protein-coupled receptors. Following interaction with their specific chemokine ligands, chemokine receptors trigger a flux in intracellular calcium (Ca2+) ions (calcium signaling). This causes cell responses, including the onset of a process known as chemotaxis that traffics the cell to a desired location within the organism. Chemokine receptors are divided into different families, CXC chemokine receptors, CC chemokine receptors, CX3C chemokine receptors and XC chemokine receptors that correspond to the 4 distinct subfamilies of chemokines they bind. Four families of chemokine receptors differ in spacing of cysteine residues near N-terminal of the receptor.

<span class="mw-page-title-main">Endoglin</span> Protein-coding gene in the species Homo sapiens

Endoglin (ENG) is a type I membrane glycoprotein located on cell surfaces and is part of the TGF beta receptor complex. It is also commonly referred to as CD105, END, FLJ41744, HHT1, ORW and ORW1. It has a crucial role in angiogenesis, therefore, making it an important protein for tumor growth, survival and metastasis of cancer cells to other locations in the body.

<span class="mw-page-title-main">Alveolar macrophage</span>

An alveolar macrophage, pulmonary macrophage, is a type of macrophage, a professional phagocyte, found in the airways and at the level of the alveoli in the lungs, but separated from their walls.

<span class="mw-page-title-main">TGFBR3</span> Protein-coding gene in the species Homo sapiens

Betaglycan also known as Transforming growth factor beta receptor III (TGFBR3), is a cell-surface chondroitin sulfate / heparan sulfate proteoglycan >300 kDa in molecular weight. Betaglycan binds to various members of the TGF-beta superfamily of ligands via its core protein, and bFGF via its heparan sulfate chains. TGFBR3 is the most widely expressed type of TGF-beta receptor. Its affinity towards all individual isoforms of TGF-beta is similarly high and therefore it plays an important role as a coreceptor mediating the binding of TGF-beta to its other receptors - specifically TGFBR2. The intrinsic kinase activity of this receptor has not yet been described. In regard of TGF-beta signalling it is generally considered a non-signaling receptor or a coreceptor. By binding to various member of the TGF-beta superfamily at the cell surface it acts as a reservoir of TGF-beta.

<span class="mw-page-title-main">Integrin beta 2</span> Mammalian protein found in Homo sapiens

In molecular biology, CD18 is an integrin beta chain protein that is encoded by the ITGB2 gene in humans. Upon binding with one of a number of alpha chains, CD18 is capable of forming multiple heterodimers, which play significant roles in cellular adhesion and cell surface signaling, as well as important roles in immune responses. CD18 also exists in soluble, ligand binding forms. Deficiencies in CD18 expression can lead to adhesion defects in circulating white blood cells in humans, reducing the immune system's ability to fight off foreign invaders.

<span class="mw-page-title-main">Granulocyte-macrophage colony-stimulating factor receptor</span> Protein-coding gene in the species Homo sapiens

The granulocyte-macrophage colony-stimulating factor receptor also known as CD116, is a receptor for granulocyte-macrophage colony-stimulating factor, which stimulates the production of white blood cells. In contrast to M-CSF and G-CSF which are lineage specific, GM-CSF and its receptor play a role in earlier stages of development. The receptor is primarily located on neutrophils, eosinophils and monocytes/macrophages, it is also on CD34+ progenitor cells (myeloblasts) and precursors for erythroid and megakaryocytic lineages, but only in the beginning of their development.

<span class="mw-page-title-main">Upstream and downstream (transduction)</span>

The upstream signaling pathway is triggered by the binding of a signaling molecule, a ligand, to a receiving molecule, a receptor. Receptors and ligands exist in many different forms, and only recognize/bond to particular molecules. Upstream extracellular signaling transduce a variety of intracellular cascades.

<span class="mw-page-title-main">Transforming growth factor, beta 3</span> Protein-coding gene in the species Homo sapiens

Transforming growth factor beta-3 is a protein that in humans is encoded by the TGFB3 gene.

The following outline is provided as an overview of and topical guide to immunology:

<span class="mw-page-title-main">Cell surface receptor</span> Class of ligand activated receptors localized in surface of plama cell membrane

Cell surface receptors are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving extracellular molecules. They are specialized integral membrane proteins that allow communication between the cell and the extracellular space. The extracellular molecules may be hormones, neurotransmitters, cytokines, growth factors, cell adhesion molecules, or nutrients; they react with the receptor to induce changes in the metabolism and activity of a cell. In the process of signal transduction, ligand binding affects a cascading chemical change through the cell membrane.

<span class="mw-page-title-main">Interferon gamma receptor (IFNGR1) family</span>

In molecular biology, the interferon gamma receptor (IFNGR1) family is a family of proteins which includes several eukaryotic and viral interferon gamma receptor proteins.

The transforming growth factor beta (TGFβ) receptors are a family of serine/threonine kinase receptors involved in TGF beta signaling pathway. These receptors bind growth factor and cytokine signaling proteins in the TGF-beta family such as TGFβs, bone morphogenetic proteins (BMPs), growth differentiation factors (GDFs), activin and inhibin, myostatin, anti-Müllerian hormone (AMH), and NODAL.

<span class="mw-page-title-main">K. Christopher Garcia</span>


K. Christopher "Chris" Garcia, Ph.D., is an American scientist known for his research on the molecular and structural biology of cell surface receptors. Garcia is a professor in the Departments of Molecular and Cellular Physiology and Structural Biology at the Stanford University School of Medicine, an Investigator of the Howard Hughes Medical Institute and a member of the National Academies of Science and Medicine. In addition to his role at Stanford, Garcia is a co-founder of several biotechnology companies, including Alexo Therapeutics, Surrozen, and 3T Biosciences.

References

  1. Brooks, Andrew J.; Dehkhoda, Farhad; Kragelund, Birthe B. (2017). "Cytokine Receptors". Principles of Endocrinology and Hormone Action. Springer International Publishing. pp. 1–29. doi:10.1007/978-3-319-27318-1_8-2. ISBN   9783319273181.
  2. Arimont A, Sun S, Smit MJ, Leurs R, de Esch IJ, de Graaf C (2017). "Structural Analysis of Chemokine Receptor-Ligand Interactions". J Med Chem. 60 (12): 4735–4779. doi:10.1021/acs.jmedchem.6b01309. PMC   5483895 . PMID   28165741.
  3. Heaney ML1, Golde DW (1998). "Soluble receptors in human disease". Journal of Leukocyte Biology . 64 (2): 135–146. doi:10.1002/jlb.64.2.135. PMID   9715251. S2CID   34021597.[ permanent dead link ]