Atypical chemokine receptor 3 also known as C-X-C chemokine receptor type 7 (CXCR-7) and G-protein coupled receptor 159 (GPR159) is a protein that in humans is encoded by the ACKR3 gene. [5] [6]
This gene encodes a G protein-coupled receptor family member. It belongs to the chemokine receptor family of GPCRs. Within this family, ACKR3 is classified as a class A GPCR. [7] This GPCR protein was earlier thought to be a receptor for vasoactive intestinal peptide (VIP) and was considered to be an orphan receptor. It is now classified as a chemokine receptor able to bind the chemokines CXCL12/SDF-1 and CXCL11. The protein is also a coreceptor for human immunodeficiency viruses (HIV). Translocations involving this gene and HMGA2 on chromosome 12 have been observed in lipomas. Alternatively spliced transcript variants encoding the same protein isoform have been found for this gene. Whereas some reports claim that the receptor induces signaling following ligand binding, recent findings in zebrafish suggest that CXCR7 functions primarily by sequestering the chemokine CXCL12. [6]
Another study has provided evidence that ligand binding to CXCR7 activates MAP kinases through Beta-arrestins, and thus has functions beyond ligand sequestration. [8]
ACKR3 has also been shown to sequester endogenous opioid peptides, and is thought to modulate their activity. Inhibition of ACKR3 by ligands such as the peptide LIH383 (FGGFMRRK-NH2) increases opioid peptide activity and produces analgesic and antidepressant effects in animal studies. [9]
In 2013, the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology subcommittee for chemokine receptors reevaluated C-X-C chemokine receptor type 7 (CXCR7) and classified it as an atypical chemokine receptor, leading to its renaming as atypical chemokine receptor 3 (ACKR3). Additional names that have been mentioned in the literature, albeit less frequently, include GPR159 and Orphan receptor RDC1, the latter being a term primarily found in older literature. [10]
ACKR3 stands out as an atypical receptor due to its β-arrestin-biased signaling nature. In the case of a β-arrestin-biased receptor like ACKR3, when it is treated with an unbiased ligand, it triggers signaling pathways solely mediated by β-arrestin. What sets ACKR3 apart is its absence of G-protein involvement, which distinguishes it from typical GPCRs. [11]
Despite being considered atypical, the functions of ACKR3 do not imply that it acts as a completely inactive receptor for CXCL12. On the contrary, extensive literature supports the notion of ACKR3 engaging in active signaling, which is believed to rely on arrestin-mediated mechanisms. Nevertheless, its role as a decoy receptor for CXCL12/SDF1 is well-established. This is evident by the significantly higher affinity of CXCL12 binding to ACKR3/CXCR7 compared to CXCR4, along with its constant internalization facilitated by the recruitment of β-arrestin, without known downstream signaling events. [12] [13]
In addition to CXCL12, ACKR3 engages with multiple ligands, encompassing CXCL11, macrophage inhibitory factor (MIF), adrenomedullin (ADM), opioid peptides such as nociceptin, dynorphin, and enkephalin, as well as the viral chemokine vCCL2/viral macrophage inflammatory protein-II. [12] [14]
ACKR3 and CXCR4 have been shown to interact, different possibilities regarding the involvement of ACKR3 and CXCR4 in CXCL12 signaling: [12]
A) ACKR3 can attenuate CXCR4 signaling by forming heterodimers with CXCR4. While this interaction was initially observed in cells with CXCR7 overexpression, it has rarely been observed with endogenous CXCR7.
B) Multiple cell types demonstrate that either ACKR3 or CXCR4 controls specific cell functions (e.g., migration, proliferation). The distinct regulation of these functions occurs through one of the receptors.
C) Synergistic effects between CXCR4 and ACKR3 have been observed in many cases, suggesting that cellular responses to CXCL12 require the presence of both receptors. Whether receptor heterodimerization is responsible for these synergistic effects remains uncertain.
D) In addition to synergistic effects, a few studies have shown additive effects of ACKR3 and CXCR4 on specific cell functions. However, it has not been experimentally tested whether receptor heterodimerization is necessary for these additive effects. E) Within specific cell types, CXCR4, ACKR3, and CXCR4/ACKR3 heterodimers control distinct cell functions. This pattern appears to be a common arrangement of the CXCL12 system in various types of stem and progenitor cells.
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.
The stromal cell-derived factor 1 (SDF-1), also known as C-X-C motif chemokine 12 (CXCL12), is a chemokine protein that in humans is encoded by the CXCL12 gene on chromosome 10. It is ubiquitously expressed in many tissues and cell types. Stromal cell-derived factors 1-alpha and 1-beta are small cytokines that belong to the chemokine family, members of which activate leukocytes and are often induced by proinflammatory stimuli such as lipopolysaccharide, TNF, or IL1. The chemokines are characterized by the presence of 4 conserved cysteines that form 2 disulfide bonds. They can be classified into 2 subfamilies. In the CC subfamily, the cysteine residues are adjacent to each other. In the CXC subfamily, they are separated by an intervening amino acid. The SDF1 proteins belong to the latter group. CXCL12 signaling has been observed in several cancers. The CXCL12 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.
Chemokines, or chemotactic cytokines, are a family of small cytokines or signaling proteins secreted by cells that induce directional movement of leukocytes, as well as other cell types, including endothelial and epithelial cells. In addition to playing a major role in the activation of host immune responses, chemokines are important for biological processes, including morphogenesis and wound healing, as well as in the pathogenesis of diseases like cancers.
Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This process forms vesicles containing the absorbed substances and is strictly mediated by receptors on the surface of the cell. Only the receptor-specific substances can enter the cell through this process.
Functional selectivity is the ligand-dependent selectivity for certain signal transduction pathways relative to a reference ligand at the same receptor. Functional selectivity can be present when a receptor has several possible signal transduction pathways. To which degree each pathway is activated thus depends on which ligand binds to the receptor. Functional selectivity, or biased signaling, is most extensively characterized at G protein coupled receptors (GPCRs). A number of biased agonists, such as those at muscarinic M2 receptors tested as analgesics or antiproliferative drugs, or those at opioid receptors that mediate pain, show potential at various receptor families to increase beneficial properties while reducing side effects. For example, pre-clinical studies with G protein biased agonists at the μ-opioid receptor show equivalent efficacy for treating pain with reduced risk for addictive potential and respiratory depression. Studies within the chemokine receptor system also suggest that GPCR biased agonism is physiologically relevant. For example, a beta-arrestin biased agonist of the chemokine receptor CXCR3 induced greater chemotaxis of T cells relative to a G protein biased agonist.
C-X-C chemokine receptor type 4 (CXCR-4) also known as fusin or CD184 is a protein that in humans is encoded by the CXCR4 gene. The protein is a CXC chemokine receptor.
G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.
G-protein-coupled receptor kinase 2 (GRK2) is an enzyme that in humans is encoded by the ADRBK1 gene. GRK2 was initially called Beta-adrenergic receptor kinase, and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK3(βARK2).
CXC chemokine receptors are integral membrane proteins that specifically bind and respond to cytokines of the CXC chemokine family. They represent one subfamily of chemokine receptors, a large family of G protein-linked receptors that are known as seven transmembrane (7-TM) proteins, since they span the cell membrane seven times. There are currently six known CXC chemokine receptors in mammals, named CXCR1 through CXCR6.
The nociceptin opioid peptide receptor (NOP), also known as the nociceptin/orphanin FQ (N/OFQ) receptor or kappa-type 3 opioid receptor, is a protein that in humans is encoded by the OPRL1 gene. The nociceptin receptor is a member of the opioid subfamily of G protein-coupled receptors whose natural ligand is the 17 amino acid neuropeptide known as nociceptin (N/OFQ). This receptor is involved in the regulation of numerous brain activities, particularly instinctive and emotional behaviors. Antagonists targeting NOP are under investigation for their role as treatments for depression and Parkinson's disease, whereas NOP agonists have been shown to act as powerful, non-addictive painkillers in non-human primates.
Gi protein alpha subunit is a family of heterotrimeric G protein alpha subunits. This family is also commonly called the Gi/o family or Gi/o/z/t family to include closely related family members. G alpha subunits may be referred to as Gi alpha, Gαi, or Giα.
WHIM syndrome is a rare congenital immunodeficiency disorder characterized by chronic noncyclic neutropenia.
The urotensin-2 receptor (UR-II-R) also known as GPR14 is a class A rhodopsin family G protein coupled-receptor (GPCR) that is 386 amino acids long which binds primarily to the neuropeptide urotensin II.[1] The receptor quickly rose to prominence when it was found that when activated by urotensin II it induced the most potent vasoconstriction effect ever seen. While the precise function of the urotensin II receptor is not fully known it has been linked to cardiovascular effects, stress, and REM sleep.
C-C chemokine receptor type 7 is a protein that in humans is encoded by the CCR7 gene. Two ligands have been identified for this receptor: the chemokines ligand 19 (CCL19/ELC) and ligand 21 (CCL21). The ligands have similar affinity for the receptor, though CCL19 has been shown to induce internalisation of CCR7 and desensitisation of the cell to CCL19/CCL21 signals. CCR7 is a transmembrane protein with 7 transmembrane domains, which is coupled with heterotrimeric G proteins, which transduce the signal downstream through various signalling cascades. The main function of the receptor is to guide immune cells to immune organs by detecting specific chemokines, which these tissues secrete.
G protein-coupled receptor 56 also known as TM7XN1 is a protein encoded by the ADGRG1 gene. GPR56 is a member of the adhesion GPCR family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.
G-protein coupled receptor 3 is a protein that in humans is encoded by the GPR3 gene. The protein encoded by this gene is a member of the G protein-coupled receptor family of transmembrane receptors and is involved in signal transduction.
Rhodopsin-like receptors are a family of proteins that comprise the largest group of G protein-coupled receptors.
This gene encodes a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinase family, and is most highly similar to GRK4 and GRK5. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.
Pepducins are cell-penetrating peptides that act as intracellular modulators of signal transference from receptors to G proteins. Pepducins were first developed at the Tufts Medical Center laboratories of Dr. Athan Kuliopulos and Dr. Lidija Covic.
G-protein-coupled receptor kinase 3 (GRK3) is an enzyme that in humans is encoded by the ADRBK2 gene. GRK3 was initially called Beta-adrenergic receptor kinase 2 (βARK-2), and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK2.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.