CD27

Last updated
CD27
Identifiers
Aliases CD27 , S152, S152. LPFS2, T14, TNFRSF7, Tp55, CD27 molecule
External IDs OMIM: 186711 MGI: 88326 HomoloGene: 74386 GeneCards: CD27
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001242

NM_001033126
NM_001042564
NM_001286753

RefSeq (protein)

NP_001233

NP_001028298
NP_001036029
NP_001273682

Location (UCSC) Chr 12: 6.44 – 6.45 Mb Chr 6: 125.21 – 125.21 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

CD27 is a member of the tumor necrosis factor receptor superfamily. [5] It is currently of interest to immunologists as a co-stimulatory immune checkpoint molecule, and is the target of an anti-cancer drug in clinical trials. [6]

Contents

Expression

During mouse embryonic development, specific (medium) expression levels of CD27 (in addition to high cKit, [7] [8] medium Gata2, [9] [10] [8] and high CD31 [8] expression levels) define the very first adult definitive hematopoietic stem cells generated in the aorta-gonad-mesonephros region. [8] Furthermore, CD27 is expressed on both naïve and activated effector T cells as well as NK cells and activated B cells. [5] It is a type I transmembrane protein with cysteine-rich domains, but once T cells have become activated, a soluble form of CD27 can be shed. [5] [6]

Function

The protein encoded by this gene is a member of the TNF-receptor superfamily. [11] This receptor is required for generation and long-term maintenance of T cell immunity. It binds to ligand CD70, and plays a key role in regulating B-cell activation and immunoglobulin synthesis. [5]

When CD27 binds CD70, a signaling cascade leads to the differentiation and clonal expansion of T cells. [11] The cascade also results in improved survival and memory of cytotoxic T cells and increased production of certain cytokines. [12] This receptor transduces signals that lead to the activation of NF-κB and MAPK8/JNK. [11] Adaptor proteins TRAF2, TRAF3, and TRAF5 have been shown to mediate the signaling process of this receptor via ubiquitination. [5] [6] CD27-binding protein (SIVA), a proapoptotic protein, can bind to this receptor and is thought to play an important role in the apoptosis induced by this receptor. [13]

In murine γδ T cells its expression has been correlated with the secretion of IFNγ. [14]

Clinical significance

As a drug target

Varlilumab is an IgG1 antibody that binds to CD27 and is an experimental cancer treatment. [6] This agonist antibody stimulates CD27 when it binds. [6] The drug is in early clinical trials and appears to stimulate T cells and increase production of cytokines such as interferon-gamma. [6] [11]

Interactions

CD27 has been shown to interact with SIVA1, [15] TRAF2 [16] [17] and TRAF3. [16] [17]

Mutations

Some mutations can decrease the expression of CD27. Three such mutations, C53Y, C96Y, and R107C, are located in the cysteine-rich domains of CD27. [5]

Related Research Articles

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain.

<span class="mw-page-title-main">CD30</span> Mammalian protein found in Homo sapiens

CD30, also known as TNFRSF8, is a cell membrane protein of the tumor necrosis factor receptor family and a tumor marker.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in Homo sapiens

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

Co-stimulation is a secondary signal which immune cells rely on to activate an immune response in the presence of an antigen-presenting cell. In the case of T cells, two stimuli are required to fully activate their immune response. During the activation of lymphocytes, co-stimulation is often crucial to the development of an effective immune response. Co-stimulation is required in addition to the antigen-specific signal from their antigen receptors.

<span class="mw-page-title-main">CD134</span> Protein-coding gene in humans

Tumor necrosis factor receptor superfamily, member 4 (TNFRSF4), also known as CD134 and OX40 receptor, is a member of the TNFR-superfamily of receptors which is not constitutively expressed on resting naïve T cells, unlike CD28. OX40 is a secondary co-stimulatory immune checkpoint molecule, expressed after 24 to 72 hours following activation; its ligand, OX40L, is also not expressed on resting antigen presenting cells, but is following their activation. Expression of OX40 is dependent on full activation of the T cell; without CD28, expression of OX40 is delayed and of fourfold lower levels.

CD70 is a protein that in humans is encoded by CD70 gene. CD70 is also known as a ligand for CD27.

<span class="mw-page-title-main">TRAF2</span> Protein-coding gene in humans

TNF receptor-associated factor 2 is a protein that in humans is encoded by the TRAF2 gene.

<span class="mw-page-title-main">TRADD</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor type 1-associated DEATH domain protein is a protein that in humans is encoded by the TRADD gene.

<span class="mw-page-title-main">TRAF1</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 1 is a protein that in humans is encoded by the TRAF1 gene.

<span class="mw-page-title-main">TRAF5</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor 5 is a protein that in humans is encoded by the TRAF5 gene.

<span class="mw-page-title-main">Lymphotoxin alpha</span> Protein found in humans

Lymphotoxin-alpha (LT-α) formerly known as tumor necrosis factor-beta (TNF-β) is a protein that in humans is encoded by the LTA gene. Belonging to the hematopoietic cell line, LT-α exhibits anti-proliferative activity and causes the cellular destruction of tumor cell lines. As a cytotoxic protein, LT-α performs a variety of important roles in immune regulation depending on the form that it is secreted as. Unlike other members of the TNF superfamily, LT-α is only found as a soluble homotrimer, when found at the cell surface it is found only as a heterotrimer with LTβ.

<span class="mw-page-title-main">CD69</span>

CD69 is a human transmembrane C-Type lectin protein encoded by the CD69 gene. It is an early activation marker that is expressed in hematopoietic stem cells, T cells, and many other cell types in the immune system. It is also implicated in T cell differentiation as well as lymphocyte retention in lymphoid organs.

<span class="mw-page-title-main">TRAF3</span> Protein-coding gene in the species Homo sapiens

TNF receptor-associated factor (TRAF3) is a protein that in humans is encoded by the TRAF3 gene.

<span class="mw-page-title-main">LIGHT (protein)</span> Secreted protein of the TNF superfamily

LIGHT, also known as tumor necrosis factor superfamily member 14 (TNFSF14), is a secreted protein of the TNF superfamily. It is recognized by herpesvirus entry mediator (HVEM), as well as decoy receptor 3.

<span class="mw-page-title-main">Herpesvirus entry mediator</span> Protein-coding gene in the species Homo sapiens

Herpesvirus entry mediator (HVEM), also known as tumor necrosis factor receptor superfamily member 14 (TNFRSF14), is a human cell surface receptor of the TNF-receptor superfamily.

<span class="mw-page-title-main">Transmembrane activator and CAML interactor</span> Protein-coding gene in the species Homo sapiens

Transmembrane activator and CAML interactor (TACI), also known as tumor necrosis factor receptor superfamily member 13B (TNFRSF13B) is a protein that in humans is encoded by the TNFRSF13B gene.

<span class="mw-page-title-main">TANK (gene)</span> Protein-coding gene in the species Homo sapiens

TRAF family member-associated NF-kappa-B activator is a protein that in humans is encoded by the TANK gene.

<span class="mw-page-title-main">TNFRSF18</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), also known as glucocorticoid-induced TNFR-related protein (GITR) or CD357. GITR is encoded and tnfrsf18 gene at chromosome 4 in mice. GITR is type I transmembrane protein and is described in 4 different isoforms. GITR human orthologue, also called activation-inducible TNFR family receptor (AITR), is encoded by the TNFRSF18 gene at chromosome 1.

<span class="mw-page-title-main">Tumor necrosis factor receptor 2</span> Membrane receptor protein found in humans

Tumor necrosis factor receptor 2 (TNFR2), also known as tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) and CD120b, is one of two membrane receptors that binds tumor necrosis factor-alpha (TNFα). Like its counterpart, tumor necrosis factor receptor 1 (TNFR1), the extracellular region of TNFR2 consists of four cysteine-rich domains which allow for binding to TNFα. TNFR1 and TNFR2 possess different functions when bound to TNFα due to differences in their intracellular structures, such as TNFR2 lacking a death domain (DD).

<span class="mw-page-title-main">Act 1 adaptor protein</span> Act 1 adaptor protein

Act 1 adaptor protein is an essential intermediate in the interleukin-17 pathway. The IL-17 protein is a pro-inflammatory cytokine important for tissue inflammation in host defense against infection and in autoimmune disease. It is produced by the CD4 + T cells, in particular the Th17 cells. There are 6 subtypes of IL-17, from IL-17A to IL17-F, these subtypes have nearly identical structures. We know that the cytokines are interacting homotypically, but IL-17A and IL-17F are capable do perform heterotypic interaction too.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000139193 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030336 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 5 6 Buchan SL, Rogel A, Al-Shamkhani A (January 2018). "The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy". Blood. 131 (1): 39–48. doi: 10.1182/blood-2017-07-741025 . PMID   29118006.
  6. 1 2 3 4 5 6 Sturgill ER (November 2017). "TNFR agonists: a review of current biologics targeting OX40, 4-1BB, CD27, and GITR". American Journal of Hematology/Oncology. 13 (11): 4–15.
  7. Sánchez MJ, Holmes A, Miles C, Dzierzak E (December 1996). "Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo". Immunity. 5 (6): 513–25. doi: 10.1016/s1074-7613(00)80267-8 . PMID   8986712.
  8. 1 2 3 4 Vink CS, Calero-Nieto FJ, Wang X, Maglitto A, Mariani SA, Jawaid W, et al. (May 2020). "Iterative Single-Cell Analyses Define the Transcriptome of the First Functional Hematopoietic Stem Cells". Cell Reports. 31 (6): 107627. doi:10.1016/j.celrep.2020.107627. PMC   7225750 . PMID   32402290.
  9. Kaimakis P, de Pater E, Eich C, Solaimani Kartalaei P, Kauts ML, Vink CS, et al. (March 2016). "Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors". Blood. 127 (11): 1426–37. doi:10.1182/blood-2015-10-673749. PMC   4797020 . PMID   26834239.
  10. Eich C, Arlt J, Vink CS, Solaimani Kartalaei P, Kaimakis P, Mariani SA, et al. (January 2018). "In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate". The Journal of Experimental Medicine. 215 (1): 233–248. doi:10.1084/jem.20170807. PMC   5748852 . PMID   29217535.
  11. 1 2 3 4 Burugu S, Dancsok AR, Nielsen TO (October 2018). "Emerging targets in cancer immunotherapy". Seminars in Cancer Biology. Immuno-oncological biomarkers. 52 (Pt 2): 39–52. doi:10.1016/j.semcancer.2017.10.001. PMID   28987965. S2CID   33534342.
  12. Bullock TN (April 2017). "Stimulating CD27 to quantitatively and qualitatively shape adaptive immunity to cancer". Current Opinion in Immunology. 45: 82–88. doi:10.1016/j.coi.2017.02.001. PMC   5449212 . PMID   28319731.
  13. "Entrez Gene: CD27 CD27 molecule".
  14. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. (April 2009). "CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets". Nature Immunology. 10 (4): 427–36. doi:10.1038/ni.1717. PMC   4167721 . PMID   19270712.
  15. Prasad KV, Ao Z, Yoon Y, Wu MX, Rizk M, Jacquot S, Schlossman SF (June 1997). "CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein". Proceedings of the National Academy of Sciences of the United States of America. 94 (12): 6346–51. Bibcode:1997PNAS...94.6346P. doi: 10.1073/pnas.94.12.6346 . PMC   21052 . PMID   9177220.
  16. 1 2 Yamamoto H, Kishimoto T, Minamoto S (November 1998). "NF-kappaB activation in CD27 signaling: involvement of TNF receptor-associated factors in its signaling and identification of functional region of CD27". Journal of Immunology. 161 (9): 4753–9. PMID   9794406.
  17. 1 2 Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, et al. (May 1998). "CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase". The Journal of Biological Chemistry. 273 (21): 13353–8. doi: 10.1074/jbc.273.21.13353 . PMID   9582383.

Further reading