Basigin

Last updated
BSG
Protein BSG PDB 3B5H.png
Available structures
PDB Ortholog search: A0A087X2B5 PDBe A0A087X2B5 RCSB
Identifiers
Aliases BSG , 5F7, CD147, EMMPRIN, M6, OK, TCSF, basigin (Ok blood group), EMPRIN, SLC7A11, HAb18G
External IDs OMIM: 109480; MGI: 88208; HomoloGene: 1308; GeneCards: BSG; OMA:BSG - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001728
NM_198589
NM_198590
NM_198591
NM_001322243

Contents

NM_001077184
NM_009768

RefSeq (protein)

NP_001309172
NP_001719
NP_940991
NP_940992
NP_940993

NP_001070652
NP_033898

Location (UCSC) Chr 19: 0.57 – 0.58 Mb Chr 10: 79.54 – 79.55 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Basigin (BSG) also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147) is a protein that in humans is encoded by the BSG gene. [5] [6] [7] This protein is a determinant for the Ok blood group system. There are three known antigens in the Ok system; the most common being Oka (also called OK1), OK2 and OK3. Basigin has been shown to be an essential receptor on red blood cells for the human malaria parasite, Plasmodium falciparum. [8] The common isoform of basigin (basigin-2) has two immunoglobulin domains, and the extended form basigin-1 has three. [9]

Function

Basigin is a member of the immunoglobulin superfamily, with a structure related to the putative primordial form of the family. As members of the immunoglobulin superfamily play fundamental roles in intercellular recognition involved in various immunologic phenomena, differentiation, and development, basigin is thought also to play a role in intercellular recognition (Miyauchi et al., 1991; Kanekura et al., 1991). [10] [11]

It has a variety of functions. In addition to its metalloproteinase-inducing ability, basigin also regulates several distinct functions, such as spermatogenesis, expression of the monocarboxylate transporter and the responsiveness of lymphocytes. [6] Basigin is a type I integral membrane receptor that has many ligands, including the cyclophilin (CyP) proteins Cyp-A and CyP-B and certain integrins. [12] [13] [14] Basigin also serves as a receptor for S100A9 and platelet glycoprotein VI, and basigin-1 acts as a receptor for the rod-derived cone viability factor. [9] It is expressed by many cell types, including epithelial cells, endothelial cells, neural progenitor cells [15] and leukocytes. The human basigin protein contains 269 amino acids that form two heavily glycosylated C2 type immunoglobulin-like domains at the N-terminal extracellular portion. A second form of basigin has also been characterized that contains one additional immunoglobulin-like domain in its extracellular portion. [6]

Interactions

Basigin has been shown to interact with Ubiquitin C. [16]

Basigin has been shown to form a complex with monocarboxylate transporters in the retina of mice. Basigin appears to be required for proper placement of MCTs in the membrane. In the Basigin null mouse, the failure of MCTs to integrate with the membrane may be directly linked to a failure of nutrient transfer in the retinal pigmented epithelium (the lactates transported by MCTs 1, 3, and 4 are essential nutrients for the developing RPE), resulting in loss of sight in the null animal. [17]

Basigin interacts with the fourth C-type lectin [ circular reference ] domain in the receptor Endo180 [18] to form a molecular epithelial-mesenchymal transition [ citation needed ] suppressor complex that if disrupted results in the induction of invasive prostate epithelial cell behavior associated with poor prostate cancer survival. [19]

Modulators

It have been shown that Atorvastatin suppresses CD147 and MMP-3 expression. [20] [21]

Role in malaria

It has recently (November 2011) been found that basigin is a receptor that is essential to erythrocyte invasion by most strains of Plasmodium falciparum , the most virulent species of the plasmodium parasites that cause human malaria. It is hoped that by developing antibodies to the parasite ligand for Basigin, Rh5, a better vaccine for malaria might be found. [8] Basigin is bound by the PfRh5 protein on the surface of the malaria parasite.[ citation needed ]

Role in SARS-CoV-2 infection (COVID-19)

Meplazumab, an anti-CD147 antibody, was tested in patients with SARS-CoV-2 pneumonia. [22]

Some of these claims have been challenged by another group of scientists who found no evidence of a direct role for basigin in either binding the viral spike protein or promoting lung cell infection. [23]

More recent studies suggests CD147 as SARS-CoV-2 entry receptor of platelets and megakaryocytes, leading to hyperactivation and thrombosis, that differs from common cold coronavirus CoV-OC43. Incubation of megakaryocyte cells with SARS-CoV-2 resulted in a significant increase in the proinflammatory transcripts LGALS3BP and S100A9. Notably, CD147 antibody-mediated blocking significantly reduced the expression of S100A9, and S100A8 on megakaryocytes following incubation with SARS-CoV-2. These data indicate that megakaryocytes and platelets actively take up SARS-CoV-2 virions, likely via an ACE-2-independent mechanism. [24]

Another study states that platelets challenged with SARS-CoV-2 undergo activation, dependent on the CD147 receptor. [25] Yet SARS-CoV-2 does not replicate in human platelets, but initiates cell death. [26]

Yet another study describes high-interaction coupling of N-RBD of SARS-CoV-2 and CD147 as the main way of infecting lymphocytes allegedly leading to Acquired Immune Deficiency Syndrome. [27]

Latest studies confirms SARS-CoV-2 infection of megakaryocytes and platelets. [28] [29]

Related Research Articles

<span class="mw-page-title-main">Platelet</span> Component of blood aiding in coagulation

Platelets or thrombocytes are a component of blood whose function is to react to bleeding from blood vessel injury by clumping, thereby initiating a blood clot. Platelets have no cell nucleus; they are fragments of cytoplasm derived from the megakaryocytes of the bone marrow or lung, which then enter the circulation. Platelets are found only in mammals, whereas in other vertebrates, thrombocytes circulate as intact mononuclear cells.

<span class="mw-page-title-main">CD32</span> Surface receptor glycoprotein

CD32, also known as FcγRII or FCGR2, is a surface receptor glycoprotein belonging to the Ig gene superfamily. CD32 can be found on the surface of a variety of immune cells. CD32 has a low-affinity for the Fc region of IgG antibodies in monomeric form, but high affinity for IgG immune complexes. CD32 has two major functions: cellular response regulation, and the uptake of immune complexes. Cellular responses regulated by CD32 include phagocytosis, cytokine stimulation, and endocytic transport. Dysregulated CD32 is associated with different forms of autoimmunity, including systemic lupus erythematosus. In humans, there are three major CD32 subtypes: CD32A, CD32B, and CD32C. While CD32A and CD32C are involved in activating cellular responses, CD32B is inhibitory.

<span class="mw-page-title-main">Megakaryocyte</span> Type of bone marrow cell

A megakaryocyte is a large bone marrow cell with a lobated nucleus that produces blood platelets (thrombocytes), which are necessary for normal clotting. In humans, megakaryocytes usually account for 1 out of 10,000 bone marrow cells, but can increase in number nearly 10-fold during the course of certain diseases. Owing to variations in combining forms and spelling, synonyms include megalokaryocyte and megacaryocyte.

<span class="mw-page-title-main">Thrombopoietin</span> Mammalian protein found in Homo sapiens

Thrombopoietin (THPO) also known as megakaryocyte growth and development factor (MGDF) is a protein that in humans is encoded by the THPO gene.

<span class="mw-page-title-main">CD40 (protein)</span> Mammalian protein found in humans

Cluster of differentiation 40, CD40 is a type I transmembrane protein found on antigen-presenting cells and is required for their activation. The binding of CD154 (CD40L) on TH cells to CD40 activates antigen presenting cells and induces a variety of downstream effects.

<span class="mw-page-title-main">Fc receptor</span> Surface protein important to the immune system

In immunology, an Fc receptor is a protein found on the surface of certain cells – including, among others, B lymphocytes, follicular dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, human platelets, and mast cells – that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc region. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.

<span class="mw-page-title-main">Immunoglobulin superfamily</span> Large protein superfamily of cell surface and soluble proteins

The immunoglobulin superfamily (IgSF) is a large protein superfamily of cell surface and soluble proteins that are involved in the recognition, binding, or adhesion processes of cells. Molecules are categorized as members of this superfamily based on shared structural features with immunoglobulins ; they all possess a domain known as an immunoglobulin domain or fold. Members of the IgSF include cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine receptors and intracellular muscle proteins. They are commonly associated with roles in the immune system. Otherwise, the sperm-specific protein IZUMO1, a member of the immunoglobulin superfamily, has also been identified as the only sperm membrane protein essential for sperm-egg fusion.

<span class="mw-page-title-main">Platelet factor 4</span> Protein involved in blood clotting, wound healing and inflammation

Platelet factor 4 (PF4) is a small cytokine belonging to the CXC chemokine family that is also known as chemokine ligand 4 (CXCL4). This chemokine is released from alpha-granules of activated platelets during platelet aggregation, and promotes blood coagulation by moderating the effects of heparin-like molecules. Due to these roles, it is predicted to play a role in wound repair and inflammation. It is usually found in a complex with proteoglycan.

<span class="mw-page-title-main">Platelet glycoprotein VI</span> Protein-coding gene in the species Homo sapiens

Platelet glycoprotein VI (GPVI) is a glycoprotein receptor for collagen which is expressed in platelets. In humans, glycoprotein VI is encoded by the GP6 gene. It was first cloned in 2000 by several groups including that of Martine Jandrot-Perrus from INSERM.

<span class="mw-page-title-main">Integrin alpha 2</span> Mammalian protein found in Homo sapiens

Integrin alpha-2, or CD49b, is a protein which in humans is encoded by the CD49b gene.

<span class="mw-page-title-main">CD63</span> Mammalian protein found in Homo sapiens

CD63 antigen is a protein that, in humans, is encoded by the CD63 gene. CD63 is mainly associated with membranes of intracellular vesicles, although cell surface expression may be induced.

Platelet membrane glycoproteins are surface glycoproteins found on platelets (thrombocytes) which play a key role in hemostasis. When the blood vessel wall is damaged, platelet membrane glycoproteins interact with the extracellular matrix.

<span class="mw-page-title-main">CD81</span> Mammalian protein found in Homo sapiens

CD81 molecule, also known as CD81, is a protein which in humans is encoded by the CD81 gene. It is also known as 26 kDa cell surface protein, TAPA-1, and Tetraspanin-28 (Tspan-28).

<span class="mw-page-title-main">Thrombopoietin receptor</span> Protein-coding gene in the species Homo sapiens

The thrombopoietin receptor also known as the myeloproliferative leukemia protein or CD110 is a protein that in humans is encoded by the MPL oncogene.

<span class="mw-page-title-main">F11 receptor</span> Protein-coding gene in the species Homo sapiens

Junctional adhesion molecule A is a protein that in humans is encoded by the F11R gene. It has also been designated as CD321.

<span class="mw-page-title-main">Transmembrane activator and CAML interactor</span> Protein-coding gene in the species Homo sapiens

Transmembrane activator and CAML interactor (TACI), also known as tumor necrosis factor receptor superfamily member 13B (TNFRSF13B) is a protein that in humans is encoded by the TNFRSF13B gene.

<span class="mw-page-title-main">Pregnancy-specific beta-1-glycoprotein 1</span> Mammalian protein found in Homo sapiens

Pregnancy-specific beta-1-glycoprotein 1 (PSBG-1) also known as CD66f, is a protein that in humans is encoded by the PSG1 gene and is a member of the carcinoembryonic antigen (CEA) gene family. Pregnancy-specific glycoproteins (PSGs) are a complex consisting of carbohydrate and protein, which is present in the mammalian body specifically during pregnancy. This glycoprotein is the most abundant protein found in the maternal bloodstream during the later stages of pregnancy and it is of vital importance in fetal development. The PSG functions primarily as an immunomodulator to protect the growing fetus.

<span class="mw-page-title-main">LAIR1</span> Protein-coding gene in the species Homo sapiens

Leukocyte-associated immunoglobulin-like receptor 1 is a protein that in humans is encoded by the LAIR1 gene. LAIR1 has also been designated as CD305.

<span class="mw-page-title-main">TNFRSF12A</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor receptor superfamily member 12A also known as the TWEAK receptor (TWEAKR) is a protein that in humans is encoded by the TNFRSF12A gene.

<span class="mw-page-title-main">G6B</span> Protein-coding gene in the species Homo sapiens

Protein G6b is a protein that in humans is encoded by the G6B gene, or C6orf25.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000172270 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000023175 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kasinrerk W, Fiebiger E, Stefanová I, Baumruker T, Knapp W, Stockinger H (August 1992). "Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule". Journal of Immunology. 149 (3): 847–854. doi: 10.4049/jimmunol.149.3.847 . PMID   1634773. S2CID   24602674.
  6. 1 2 3 Yurchenko V, Constant S, Bukrinsky M (March 2006). "Dealing with the family: CD147 interactions with cyclophilins". Immunology. 117 (3): 301–309. doi:10.1111/j.1365-2567.2005.02316.x. PMC   1782239 . PMID   16476049.
  7. Miyauchi T, Masuzawa Y, Muramatsu T (November 1991). "The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen". Journal of Biochemistry. 110 (5): 770–774. doi:10.1093/oxfordjournals.jbchem.a123657. PMID   1783610.
  8. 1 2 Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. (November 2011). "Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum". Nature. 480 (7378): 534–537. Bibcode:2011Natur.480..534C. doi:10.1038/nature10606. PMC   3245779 . PMID   22080952.
  9. 1 2 Muramatsu T (May 2016). "Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners". Journal of Biochemistry. 159 (5): 481–490. doi:10.1093/jb/mvv127. PMC   4846773 . PMID   26684586 . Retrieved 13 February 2023.
  10. "Entrez Gene: BSG basigin (Ok blood group)".
  11. Kanekura T, Chen X, Kanzaki T (June 2002). "Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts". International Journal of Cancer. 99 (4): 520–528. doi: 10.1002/ijc.10390 . PMID   11992541. S2CID   37384660.
  12. Yurchenko V, Zybarth G, O'Connor M, Dai WW, Franchin G, Hao T, et al. (June 2002). "Active site residues of cyclophilin A are crucial for its signaling activity via CD147". The Journal of Biological Chemistry. 277 (25): 22959–22965. doi: 10.1074/jbc.M201593200 . PMID   11943775.
  13. Yurchenko V, O'Connor M, Dai WW, Guo H, Toole B, Sherry B, Bukrinsky M (November 2001). "CD147 is a signaling receptor for cyclophilin B". Biochemical and Biophysical Research Communications. 288 (4): 786–788. doi:10.1006/bbrc.2001.5847. PMID   11688976.
  14. Berditchevski F, Chang S, Bodorova J, Hemler ME (November 1997). "Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6". The Journal of Biological Chemistry. 272 (46): 29174–29180. doi: 10.1074/jbc.272.46.29174 . PMID   9360995.
  15. Kanemitsu M, Tsupykov O, Potter G, Boitard M, Salmon P, Zgraggen E, et al. (November 2017). "EMMPRIN overexpression in SVZ neural progenitor cells increases their migration towards ischemic cortex". Experimental Neurology. 297: 14–24. doi:10.1016/j.expneurol.2017.07.009. PMID   28716558. S2CID   4587600.
  16. Wang WJ, Li QQ, Xu JD, Cao XX, Li HX, Tang F, et al. (2008). "Interaction between CD147 and P-glycoprotein and their regulation by ubiquitination in breast cancer cells". Chemotherapy. 54 (4): 291–301. doi:10.1159/000151225. PMID   18689982. S2CID   7260048.
  17. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ (March 2003). "Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse". Investigative Ophthalmology & Visual Science. 44 (3): 1305–1311. doi: 10.1167/iovs.02-0552 . PMID   12601063.
  18. "WikiGenes: MRC2 - mannose receptor C, type 2 Homo sapiens".
  19. Rodriguez-Teja M, Gronau JH, Minamidate A, Darby S, Gaughan L, Robson C, et al. (March 2015). "Survival Outcome and EMT Suppression Mediated by a Lectin Domain Interaction of Endo180 and CD147". Molecular Cancer Research. 13 (3): 538–547. doi: 10.1158/1541-7786.MCR-14-0344-T . PMID   25381222. S2CID   9946106.
  20. Yi F, Jiang L, Xu H, Dai F, Zhou L. "Atorvastatin suppresses CD147 and MMP-3 expression and improves histological and neurological outcomes in an animal model of intracerebral hemorrhage" (PDF). International Journal of Clinical and Experimental Medicine. 11 (9): 9301–9311.
  21. Sasidhar MV, Chevooru SK, Eickelberg O, Hartung HP, Neuhaus O (18 December 2017). "Downregulation of monocytic differentiation via modulation of CD147 by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors". PLOS ONE. 12 (12): e0189701. Bibcode:2017PLoSO..1289701S. doi: 10.1371/journal.pone.0189701 . PMC   5734787 . PMID   29253870.
  22. Bian H, Zheng ZH, Wei D, Zhang Z, Kang WZ, Hao CQ, et al. (2020). "Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial". bioRxiv. doi: 10.1101/2020.03.21.20040691 .
  23. Shilts J, Crozier TW, Greenwood EJ, Lehner PJ, Wright GJ (January 2021). "No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor". Scientific Reports. 11 (1): 413. doi: 10.1038/s41598-020-80464-1 . PMC   7801465 . PMID   33432067.
  24. Barrett TJ, Bilaloglu S, Cornwell M, Burgess HM, Virginio VW, Drenkova K, et al. (December 2021). "Platelets contribute to disease severity in COVID-19". Journal of Thrombosis and Haemostasis. 19 (12): 3139–3153. doi:10.1111/jth.15534. PMC   8646651 . PMID   34538015.
  25. Maugeri N, De Lorenzo R, Clementi N, Antonia Diotti R, Criscuolo E, Godino C, et al. (October 2021). "Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19". Journal of Thrombosis and Haemostasis. 20 (2): 434–448. doi:10.1111/jth.15575. PMC   8646617 . PMID   34710269.
  26. https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.121.319117
  27. Ximeno-Rodríguez I, Blanco-Delrío I, Astigarraga E, Barreda-Gómez G (2023). "Acquired Immune Deficiency Syndrome correlation with SARS-CoV-2 N genotypes". Biomedical Journal. doi: 10.1016/j.bj.2023.100650 . PMID   37604249. S2CID   261042891.
  28. https://www.biorxiv.org/content/10.1101/2023.07.14.549113v2
  29. https://www.croiconference.org/abstract/persistence-of-sars-cov-2-in-platelets-and-megakaryocytes-in-long-covid/

Further reading