S100A9

Last updated

S100A9
Protein S100A9 PDB 1irj.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases S100A9 , 60B8AG, CAGB, CFAG, CGLB, L1AG, LIAG, MAC387, MIF, MRP14, NIF, P14, S100 calcium binding protein A9, S100-A9
External IDs OMIM: 123886; MGI: 1338947; HomoloGene: 2227; GeneCards: S100A9; OMA:S100A9 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002965

NM_001281852
NM_009114

RefSeq (protein)

NP_002956

NP_001268781
NP_033140

Location (UCSC) Chr 1: 153.36 – 153.36 Mb Chr 3: 90.6 – 90.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

S100 calcium-binding protein A9 (S100A9) also known as migration inhibitory factor-related protein 14 (MRP14) or calgranulin B is a protein that in humans is encoded by the S100A9 gene. [5]

Contents

The proteins S100A8 and S100A9 form a heterodimer called calprotectin.

Function

S100A9 is a member of the S100 family of proteins containing 2 EF hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in the inhibition of casein kinase. [5]

MRP14 complexes with MRP-8 (S100A8), another member of the S100 family of calcium-modulated proteins; together, MRP8 and MRP14 regulate myeloid cell function by binding to Toll-like receptor 4 (TLR4) [6] [7] and the receptor for advanced glycation end products. [8]

Intracellular S100A9 alters mitochondrial homeostasis within neutrophils. As a result, neutrophils lacking S100A9 produce higher levels of mitochondrial superoxide and undergo elevated levels of suicidal NETosis in response to bacterial pathogens. [9] Furthermore, S100A9-deficient mice are protected from systemic Staphylococcus aureus infections with lower bacterial burdens in the heart, which suggests an organ-specific function for S100A9. [9] [10]

Clinical significance

Altered expression of the S100A9 protein is associated with the disease cystic fibrosis. [5]

MRP-8/14 broadly regulates vascular inflammation and contributes to the biological response to vascular injury by promoting leukocyte recruitment. [11]

MRP-8/14 also regulates vascular insults by controlling neutrophil and macrophage accumulation, macrophage cytokine production, and SMC proliferation. The above study has shown therefore the deficiency of MRP-8 and MRP-14 reduces neutrophil- and monocyte-dependent vascular inflammation and attenuates the severity of diverse vascular injury responses in vivo. MRP-8/14 may be a useful biomarker of platelet and inflammatory disease activity in atherothrombosis and may serve as a novel target for therapeutic intervention. [12] Also, the platelet transcriptome reveals quantitative differences between acute and stable coronary artery disease. MRP-14 expression increases before ST-segment-elevation myocardial infarction, (STEMI), and increasing plasma concentrations of MRP-8/14 among healthy individuals predict the risk of future cardiovascular events. [13]

S100A9 (myeloid-related protein 14, MRP 14 or calgranulin B) has been implicated in the abnormal differentiation of myeloid cells in the stroma of cancer, and to leukemia progression. [14] [15] This contributes to creating an overall immunosuppressive microenvironment that may contribute to the inability of a protective or therapeutic cellular immune response to be generated by the tumor-bearing host. In myelofibrosis, S100A9/S100A8 have been shown to be expressed by macrophages and to activate stromal cells via TLR4 [16] [17] . The use of Tasquinomod, a group targeting S100A9, is currently under clinical trial for myelofibrosis patients.

Outside of malignancy, S100A9 in association with its dimerization partner, S100A8 (MRP8 or calgranulin A) signals for lymphocyte recruitment in sites of inflammation. [18] S100A9/A8 (synonyma: Calgranulin A/B; Calprotectin) are also regarded as marker proteins for a number of inflammatory diseases in humans, especially in rheumatoid arthritis and inflammatory bowel disease (IBD).

Myeloid-related protein (MRP)-8 is an inflammatory protein found in several mucosal secretions. In cervico-vaginal secretions MRP-8 can stimulate HIV production; [19] and thus might be involved in sexual transmission of HIV, as well as other sexually transmitted diseases (STD). In Vitro studies have shown that HIV-inducing of recombinant MRP-8 can increase HIV expression by up to 40-fold. [19]

Animal studies

A S100A9 knockout mouse has (a mouse mutant, that is deficient of S100A9) been constructed. This mouse is fertile, viable and healthy. However, expression of S100A8 protein, the dimerization partner of S100A9, is also absent in these mice in differentiated myeloid cells. [20] This mouse line has been used to study the role of S100A9 and S100A8 in a number of experimental inflammatory conditions.

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000163220 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000056071 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: S100A9 S100 calcium binding protein A9".
  6. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (September 2007). "Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock". Nat. Med. 13 (9): 1042–9. doi:10.1038/nm1638. PMID   17767165. S2CID   9086391.
  7. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB (2013). "RAGE and TLRs: relatives, friends or neighbours?". Molecular Immunology. 56 (4): 739–44. doi:10.1016/j.molimm.2013.07.008. PMID   23954397.
  8. Boyd JH, Kan B, Roberts H, Wang Y, Walley KR (May 2008). "S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products". Circ. Res. 102 (10): 1239–46. doi: 10.1161/CIRCRESAHA.107.167544 . PMID   18403730.
  9. 1 2 Monteith AJ, Miller JM, Maxwell CN, Chazin WJ, Skaar EP (September 2021). "Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens". Science Advances. 7 (37) eabj2101. Bibcode:2021SciA....7.2101M. doi: 10.1126/sciadv.abj2101 . PMC   8442908 . PMID   34516771.
  10. Juttukonda LJ, Berends ET, Zackular JP, Moore JL, Stier MT, Zhang Y, et al. (October 2017). "Dietary Manganese Promotes Staphylococcal Infection of the Heart". Cell Host & Microbe. 22 (4): 531–542.e8. doi:10.1016/j.chom.2017.08.009. PMC   5638708 . PMID   28943329.
  11. Croce K, Gao H, Wang Y, Mooroka T, Sakuma M, Shi C, Sukhova GK, Packard RR, Hogg N, Libby P, Simon DI (August 2009). "MRP-8/14 is Critical for the Biological Response to Vascular Injury". Circulation. 120 (5): 427–36. doi:10.1161/CIRCULATIONAHA.108.814582. PMC   3070397 . PMID   19620505.
  12. Morrow DA, Wang Y, Croce K, Sakuma M, Sabatine MS, Gao H, Pradhan AD, Healy AM, Buros J, McCabe CH, Libby P, Cannon CP, Braunwald E, Simon DI (January 2008). "Myeloid-Related Protein-8/14 and the Risk of Cardiovascular Death or Myocardial Infarction after an Acute Coronary Syndrome in the PROVE IT-TIMI 22 Trial". Am. Heart J. 155 (1): 49–55. doi:10.1016/j.ahj.2007.08.018. PMC   2645040 . PMID   18082488.
  13. Healy AM, Pickard MD, Pradhan AD, Wang Y, Chen Z, Croce K, Sakuma M, Shi C, Zago AC, Garasic J, Damokosh AI, Dowie TL, Poisson L, Lillie J, Libby P, Ridker PM, Simon DI (May 2006). "Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events". Circulation. 113 (19): 2278–84. doi: 10.1161/CIRCULATIONAHA.105.607333 . PMID   16682612.
  14. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (September 2008). "Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein". J. Exp. Med. 205 (10): 2235–49. doi:10.1084/jem.20080132. PMC   2556797 . PMID   18809714.
  15. Prieto D, Sotelo N, Seija N, Sernbo S, Abreu C, Durán R, et al. (2017). "S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression". Blood. 130 (6): 777–788. doi: 10.1182/blood-2017-02-769851 . hdl: 20.500.12008/31377 . PMID   28596424.
  16. Gleitz HF, Fuchs SN, Snoeren IA, Boys C, Nagai J, Tejeda-Mora H, Klöker V, Pritchard JE, Bakker IJ, Gargallo Garasa M, Bindels E, Saez-Rodriguez J, Vogl T, Kramann R, Dugourd A (2025). "Inhibiting the alarmin-driven hematopoiesis-stromal cell crosstalk in primary myelofibrosis ameliorates bone marrow fibrosis". HemaSphere. 9 (8) e70179. doi:10.1002/hem3.70179. ISSN   2572-9241. PMC   12351185 . PMID   40823315.
  17. Leimkühler NB, Gleitz HF, Ronghui L, Snoeren IA, Fuchs SN, Nagai JS, Banjanin B, Lam KH, Vogl T, Kuppe C, Stalmann US, Büsche G, Kreipe H, Gütgemann I, Krebs P (2021-04-01). "Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis". Cell Stem Cell. 28 (4): 637–652.e8. doi:10.1016/j.stem.2020.11.004. ISSN   1934-5909. PMID   33301706.
  18. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (December 2006). "Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis". Nat. Cell Biol. 8 (12): 1369–75. doi:10.1038/ncb1507. PMID   17128264. S2CID   36876191.
  19. 1 2 Hashemi FB, Mollenhauer J, Madsen LD, Sha BE, Nacken W, Moyer MB, Sorg C, Spear GT (2001). "Myeloid-related protein (MRP)-8 from cervico-vaginal secretions activates HIV replication". AIDS. 15 (4): 441–9. doi: 10.1097/00002030-200103090-00002 . PMID   11242140. S2CID   38638273.
  20. Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, Frings W, Schönlau F, Roth J, Sorg C, Nacken W (February 2003). "Loss of S100A9 (MRP14) Results in Reduced Interleukin-8-Induced CD11b Surface Expression, a Polarized Microfilament System, and Diminished Responsiveness to Chemoattractants In Vitro". Mol. Cell. Biol. 23 (3): 1034–43. doi:10.1128/MCB.23.3.1034-1043.2003. PMC   140712 . PMID   12529407.

Further reading