S100 protein

Last updated
S100/ICaBP type calcium binding domain
Protein S100B PDB 1b4c.png
Structure of the S100B protein. Based on PyMOL rendering of PDB 1b4c.
Identifiers
SymbolS_100
Pfam PF01023
InterPro IPR013787
PROSITE PDOC00275
SCOP2 1cnp / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1yut B:9-52 1yuu A:9-52 1yus B:9-52

1yur A:9-52 1k8u A:5-50 1k9p A:5-50 1k96 A:5-50 1k9k A:5-50 1cnp B:5-50 1a03 A:5-50 2cnp B:5-50 1jwd B:5-50 1m31 A:5-48 1k2h B:5-48 1cfp B:4-47 1psb A:4-47 1mho :4-47 1uwo A:4-47 1mq1 B:4-47 1b4c B:4-47 1sym A:4-47 1qlk B:4-47 1xyd B:4-47 1dt7 B:4-47 1mwn A:4-47 1j55 A:4-47 1ozo A:4-47 1kso A:5-48 1irj H:8-51 1xk4 K:8-51 1gqm I:4-47 1odb D:4-47 1e8a B:4-47 1clb :5-46 1ig5 A:5-46 2bca :5-46 1qx2 B:5-46 1bod :5-46 1b1g A:5-46 1kcy A:5-46 1ht9 A:5-46 2bcb :5-46 1n65 A:5-46 1boc :5-46 3icb :5-46 1kqv A:5-46 1ksm A:5-46 1cdn :5-46 4icb :5-46 1igv A:5-46 1d1o A:5-46 1cb1 :4-46 1a4p B:5-45 1bt6 A:5-45 1nsh B:7-50 1v4z A:10-19 1v50 A:10-19 1qls A:8-51 1mr8 B:5-48 1psr B:6-46

Contents

2psr :6-46 3psr A:6-46

The S100 proteins are a family of low molecular-weight proteins found in vertebrates characterized by two calcium-binding sites that have helix-loop-helix ("EF-hand-type") conformation. At least 21 different S100 proteins are known. [1] They are encoded by a family of genes whose symbols use the S100 prefix, for example, S100A1, S100A2, S100A3. They are also considered as damage-associated molecular pattern molecules (DAMPs), and knockdown of aryl hydrocarbon receptor downregulates the expression of S100 proteins in THP-1 cells. [2]

Structure

Most S100 proteins consist of two identical polypeptides (homodimeric), which are held together by noncovalent bonds. They are structurally similar to calmodulin. They differ from calmodulin, though, on the other features. For instance, their expression pattern is cell-specific, i.e. they are expressed in particular cell types. Their expression depends on environmental factors. In contrast, calmodulin is a ubiquitous and universal intracellular Ca2+ receptor widely expressed in many cells.

Normal function

S100 proteins are normally present in cells derived from the neural crest (Schwann cells, and melanocytes), chondrocytes, adipocytes, myoepithelial cells, macrophages, Langerhans cells, [3] [4] dendritic cells, [5] and keratinocytes. They may be present in some breast epithelial cells.

S100 proteins have been implicated in a variety of intracellular and extracellular functions, [6] such as regulation of protein phosphorylation, transcription factors, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, enzyme activities, cell growth and differentiation, and the inflammatory response. S100A7 (psoriasin) and S100A15 have been found to act as cytokines in inflammation, particularly in autoimmune skin conditions such as psoriasis. [7]

Pathology

S100 immunostain marking the sustentacular cells in a paraganglioma Paraganglioma - s100 - very high mag.jpg
S100 immunostain marking the sustentacular cells in a paraganglioma

Several members of the S100 protein family are useful as markers for certain tumors and epidermal differentiation. They can be found in melanomas, [8] 100% of schwannomas, 100% of neurofibromas (weaker than schwannomas), 50% of malignant peripheral nerve sheath tumors (may be weak and/or focal), paraganglioma stromal cells, histiocytoma, and clear-cell sarcomas. Further, S100 proteins are markers for inflammatory diseases and can mediate inflammation and act as antimicrobials. [9] S100 proteins have been used in the lab as cell markers for anatomic pathology.

Human genes

Nomenclature

The "S100" symbol prefix denotes that these proteins are soluble in 100%, i.e. saturated, ammonium sulfate at neutral pH. The symbol has often been hyphenated, [12] but current gene and protein nomenclature, such as HUGO Gene Nomenclature Committee nomenclature, does not use hyphens in symbols.

See also

Related Research Articles

<span class="mw-page-title-main">Interleukin 17</span> Group of proteins

Interleukin 17 family is a family of pro-inflammatory cystine knot cytokines. They are produced by a group of T helper cell known as T helper 17 cell in response to their stimulation with IL-23. Originally, Th17 was identified in 1993 by Rouvier et al. who isolated IL17A transcript from a rodent T-cell hybridoma. The protein encoded by IL17A is a founding member of IL-17 family. IL17A protein exhibits a high homology with a viral IL-17-like protein encoded in the genome of T-lymphotropic rhadinovirus Herpesvirus saimiri. In rodents, IL-17A is often referred to as CTLA8.

Chemokine ligand 1 (CCL1) is also known as small inducible cytokine A1 and I-309 in humans. CCL1 is a small glycoprotein that belongs to the CC chemokine family.

<span class="mw-page-title-main">CCR2</span> Mammalian protein found in Homo sapiens

C-C chemokine receptor type 2 (CCR2 or CD192 is a protein that in humans is encoded by the CCR2 gene. CCR2 is a CC chemokine receptor.

<span class="mw-page-title-main">C-C chemokine receptor type 7</span> Protein-coding gene in the species Homo sapiens

C-C chemokine receptor type 7 is a protein that in humans is encoded by the CCR7 gene. Two ligands have been identified for this receptor: the chemokines ligand 19 (CCL19/ELC) and ligand 21 (CCL21). The ligands have similar affinity for the receptor, though CCL19 has been shown to induce internalisation of CCR7 and desensitisation of the cell to CCL19/CCL21 signals. CCR7 is a transmembrane protein with 7 transmembrane domains, which is coupled with heterotrimeric G proteins, which transduce the signal downstream through various signalling cascades. The main function of the receptor is to guide immune cells to immune organs by detecting specific chemokines, which these tissues secrete.

<span class="mw-page-title-main">S100A7</span>

S100 calcium-binding protein A7 (S100A7), also known as psoriasin, is a protein that in humans is encoded by the S100A7 gene.

<span class="mw-page-title-main">Interleukin 1 receptor, type II</span> Protein-coding gene in the species Homo sapiens

Interleukin 1 receptor, type II (IL-1R2) also known as CD121b is an interleukin receptor. IL1R2 also denotes its human gene.

<span class="mw-page-title-main">C-C chemokine receptor type 6</span> Mammalian protein found in Homo sapiens

Chemokine receptor 6 also known as CCR6 is a CC chemokine receptor protein which in humans is encoded by the CCR6 gene. CCR6 has also recently been designated CD196. The gene is located on the long arm of Chromosome 6 (6q27) on the Watson (plus) strand. It is 139,737 bases long and encodes a protein of 374 amino acids.

<span class="mw-page-title-main">CCR10</span> Protein-coding gene in the species Homo sapiens

C-C chemokine receptor type 10 is a protein that in humans is encoded by the CCR10 gene.

<span class="mw-page-title-main">S100A9</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A9 (S100A9) also known as migration inhibitory factor-related protein 14 (MRP14) or calgranulin B is a protein that in humans is encoded by the S100A9 gene.

<span class="mw-page-title-main">CD244</span> Protein found in humans

CD244 also known as 2B4 or SLAMF4 is a protein that in humans is encoded by the CD244 gene.

<span class="mw-page-title-main">S100A11</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A11 (S100A11) is a protein that in humans is encoded by the S100A11 gene.

<span class="mw-page-title-main">KIR2DL4</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 2DL4 is a protein that in humans is encoded by the KIR2DL4 gene.

<span class="mw-page-title-main">S100A12</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A12 (S100A12) is a protein that in humans is encoded by the S100A12 gene. Human S100A12, also known as calgranulin C, was first described in 1995.

<span class="mw-page-title-main">S100P</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein P (S100P) is a protein that in humans is encoded by the S100P gene.

<span class="mw-page-title-main">KIR3DL2</span> Protein-coding gene in the species Homo sapiens

Killer cell immunoglobulin-like receptor 3DL2 is a protein that in humans is encoded by the KIR3DL2 gene.

<span class="mw-page-title-main">CD79A</span> Mammalian protein found in Homo sapiens

Cluster of differentiation CD79A also known as B-cell antigen receptor complex-associated protein alpha chain and MB-1 membrane glycoprotein, is a protein that in humans is encoded by the CD79A gene.

<span class="mw-page-title-main">S100A7A</span> Protein-coding gene in the species Homo sapiens

Protein S100-A7A (S100A7A), also known as koebnerisin, is a protein that in humans is encoded by the S100A7A gene.

<span class="mw-page-title-main">S100A14</span> Protein-coding gene in the species Homo sapiens

S100 calcium binding protein A14 (S100A14) is a protein that in humans is encoded by the S100A14 gene.

The S100 calcium-binding protein mS100a7a15 is the murine ortholog of human S100A7 (Psoriasin) and human S100A15 (Koebnerisin). mS100a7a15 is also known as S100a15, mS100a7 and mS100a7a and is encoded by the mS100a7a gene

The epidermal differentiation complex (EDC) is a gene complex comprising over fifty genes encoding proteins involved in the terminal differentiation and cornification of keratinocytes, the primary cell type of the epidermis. In humans, the complex is located on a 1.9 Mbp stretch within chromosome 1q21. The proteins encoded by EDC genes are closely related in terms of function, and evolutionarily they belong to three distinct gene families: the cornified envelope precursor family, the S100 protein family and the S100 fused type protein (SFTP) family.

References

  1. Marenholz I, Heizmann CW, Fritz G (2004). "S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature)". Biochemical and Biophysical Research Communications. 322 (4): 1111–22. doi:10.1016/j.bbrc.2004.07.096. PMID   15336958.
  2. Memari B, Bouttier M, Dimitrov V, Ouellette M, Behr MA, Fritz JH, White JH (2015). "Engagement of the Aryl Hydrocarbon Receptor in Mycobacterium tuberculosis-Infected Macrophages Has Pleiotropic Effects on Innate Immune Signaling". Journal of Immunology. 195 (9): 4479–91. doi: 10.4049/jimmunol.1501141 . PMID   26416282.
  3. Wilson, AJ; Maddox, PH; Jenkins, D (January 1991). "CD1a and S100 antigen expression in skin Langerhans cells in patients with breast cancer". The Journal of Pathology. 163 (1): 25–30. doi:10.1002/path.1711630106. PMID   2002421. S2CID   70911084.
  4. Coppola D, Fu L, Nicosia SV, Kounelis S, Jones M (1998). "Prognostic significance of p53, bcl-2, vimentin, and S100 protein-positive Langerhans cells in endometrial carcinoma". Human Pathology. 29 (5): 455–62. doi:10.1016/s0046-8177(98)90060-0. PMID   9596268.
  5. Shinzato M, Shamoto M, Hosokawa S, Kaneko C, Osada A, Shimizu M, Yoshida A (1995). "Differentiation of Langerhans cells from interdigitating cells using CD1a and S-100 protein antibodies". Biotechnic & Histochemistry. 70 (3): 114–8. doi:10.3109/10520299509108327. PMID   7548432.
  6. Donato R (2003). "Intracellular and extracellular roles of S100 proteins". Microscopy Research and Technique. 60 (6): 540–51. doi: 10.1002/jemt.10296 . PMID   12645002. S2CID   37798037.
  7. Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J, Divi R, Gunsior M, Goldsmith P, Ahvazi B, Chavakis T, Oppenheim JJ, Yuspa SH (2008). "Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15". Journal of Immunology. 181 (2): 1499–506. doi:10.4049/jimmunol.181.2.1499. PMC   2435511 . PMID   18606705.
  8. Nonaka D, Chiriboga L, Rubin BP (2008). "Differential expression of S100 protein subtypes in malignant melanoma, and benign and malignant peripheral nerve sheath tumors". Journal of Cutaneous Pathology. 35 (11): 1014–9. doi:10.1111/j.1600-0560.2007.00953.x. PMID   18547346. S2CID   22907221.
  9. Wolf R, Ruzicka T, Yuspa SH (July 2010). "Novel S100A7 (psoriasin)/S100A15 (koebnerisin) subfamily: highly homologous but distinct in regulation and function". Amino Acids. 41 (4): 789–96. doi:10.1007/s00726-010-0666-4. PMC   6410564 . PMID   20596736.
  10. Penumutchu, Srinivasa R.; Chou, Ruey-Hwang; Yu, Chin (2014-08-01). "Structural Insights into Calcium-Bound S100P and the V Domain of the RAGE Complex". PLOS ONE. 9 (8): e103947. Bibcode:2014PLoSO...9j3947P. doi: 10.1371/journal.pone.0103947 . ISSN   1932-6203. PMC   4118983 . PMID   25084534.
  11. Penumutchu, Srinivasa R.; Chou, Ruey-Hwang; Yu, Chin (2014-10-17). "Interaction between S100P and the anti-allergy drug cromolyn". Biochemical and Biophysical Research Communications. 454 (3): 404–409. doi:10.1016/j.bbrc.2014.10.048. ISSN   1090-2104. PMID   25450399.
  12. Elsevier, Dorland's Illustrated Medical Dictionary, Elsevier.

Further reading