S100A7A

Last updated
S100A7A
PDB 3psr EBI.jpg
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases S100A7A , NICE-2, S100A15, S100A7L1, S100A7f, S100 calcium binding protein A7A, NICE2
External IDs OMIM: 617427 GeneCards: S100A7A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_176823

n/a

RefSeq (protein)

NP_789793

n/a

Location (UCSC) Chr 1: 153.42 – 153.42 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Protein S100-A7A (S100A7A), also known as koebnerisin, is a protein that in humans is encoded by the S100A7A (alias: S100A15) gene. [3]

Contents

S100 proteins are a diverse calcium-binding family that regulate fundamental cellular and extracellular processes including cell proliferation and differentiation, cell migration, and the antimicrobial host defense as antimicrobial peptides.

Koebnerisin (S100A7A) was first identified upregulated in inflammation-prone psoriatic skin, suggesting involvement in the lesional phenotype of the disease, [4] Koebner phenomenon. Today, the protein is of further interest because of its role in antimicrobial defence, innate immunity, epidermal cell maturation and epithelial tumorigenesis. [5] [6]

Function

Epithelial homeostasis and antimicrobial host defense

Skin: In normal epidermis, koebnerisin (S100A7A) is expressed by epidermal basal and differentiated keratinocytes, melanocytes, and Langerhans cells. Within the pilosebaceous unit, S100A7A is found in the inner and external root sheath and the basal layer of the sebaceous gland. In the dermis, koebnerisin (S100A7A) is produced by dendritic cells, smooth muscle cells, endothelial cells, as well as fibroblasts to control tissue regeneration. [7] [8] [9] [10]

Breast: Koebnerisin (S100A7A) is expressed by alveolar and small duct luminal cells and by epithelial-derived myoepithelial cells around acini and by surrounding blood vessels. [11]

Koebnerisin (S100A7A) functions as an antimicrobial peptide (AMP) reducing survival of E. coli and was strongly regulated by several bacterial components, such as Pseudomonas aeruginosa and Staphylococcus aureus . Thus, koebnerisin participates in the antimicrobial host defence of the skin and in the digestive tract of breast-feeding newborns. [12]

Epithelial carcinogenesis

Breast cancer: Koebnerisin (S100A7A) is overexpressed in ER/PR negative tumors suggesting a regulation with tumor progression. [11] The secreted koebnerisin (S100A7A) acts as a chemoattractant, [8] enhances inflammation and thus could drive breast carcinogenesis.

Inflammation

Koebnerisin (S100A7A) is overexpressed in inflammatory skin diseases, such as psoriasis and eczema. [13] It is regulated through Th1 and Th17 but not Th2 proinflammatory cytokines. [14] [15] When released into the extracellar space, koebnerisin (S100A7A) induces inflammation. It acts as a chemoattractant for myeloid leukocytes through a pertussis toxin sensitive Gi protein coupled receptor. Koebnerisin (S100A7A) amplifies inflammation with related psoriasin (S100A7) that is co-regulated and proinflammatory through RAGE.

Genomic organization and mRNA splice variants

Koebnerisin (S100A7A) maps to the S100 gene cluster within the epidermal differentiation complex (EDC, chromosome 1q21) and reveals an unusual genomic organization compared to other S100 members. The two alternative mRNA-isoforms of koebnerisin share the same coding region, but show differences in composition and length of adjacent untranslated regions (S100A7A-short (S): 0.5 kb vs. hS100A7A-long (L): 4.4 kb). Both splice variants are differently regulated in inflammatory skin diseases suggesting usage of alternate promoters. [4] [14]

Protein

The amino acid sequence reveals a conserved C-terminal and a variant N-terminal EF-hand typical for S100 proteins (101 amino acids, 11.305 Da, calculated pI of 7.57 kDa). Compared to most S100 proteins, koebnerisin (S100A7A) is basic.

Evolution

Primate

Koebnerisin (S100A7A) has lately evolved by gene duplications within the Epidermal Differentiation Complex (EDC, chromosome 1q21) during primate evolution forming a novel S100 subfamily together with Psoriasin (S100A7). [16] [17] Therefore, koebnerisin is almost identical to psoriasin in sequence (>90%). Despite their high homology, koebnerisin (S100A7A) and psoriasin (S100A7) are distinct in tissue distribution, regulation, structure [18] [19] and function and, thus exemplary for the diversity within the S100 family. Their different properties are compelling reasons to discriminate S100A7A (koebnerisin) and S100A7 (psoriasin) in epithelial homeostasis, inflammation and cancer.

Rodent

Koebnerisin (S100A7A) and psoriasin (S100A7) share a common protein in mice encoded by the S100a7a15 (alias: mS100A7, mS100A15, mS100a7a) gene. [20] It can be used to study the significance of the corresponding human proteins for epidermal maturation, inflammation and epithelial carcinogenesis. [17] [21] [22] [23]

Related Research Articles

<span class="mw-page-title-main">Keratinocyte</span> Primary type of cell found in the epidermis

Keratinocytes are the primary type of cell found in the epidermis, the outermost layer of the skin. In humans, they constitute 90% of epidermal skin cells. Basal cells in the basal layer of the skin are sometimes referred to as basal keratinocytes. Keratinocytes form a barrier against environmental damage by heat, UV radiation, water loss, pathogenic bacteria, fungi, parasites, and viruses. A number of structural proteins, enzymes, lipids, and antimicrobial peptides contribute to maintain the important barrier function of the skin. Keratinocytes differentiate from epidermal stem cells in the lower part of the epidermis and migrate towards the surface, finally becoming corneocytes and eventually be shed off, which happens every 40 to 56 days in humans.

<span class="mw-page-title-main">Keratin 10</span> Protein-coding gene in the species Homo sapiens

Keratin, type I cytoskeletal 10 also known as cytokeratin-10 (CK-10) or keratin-10 (K10) is a protein that in humans is encoded by the KRT10 gene. Keratin 10 is a type I keratin.

<span class="mw-page-title-main">Keratin 16</span> Protein-coding gene in the species Homo sapiens

Keratin 16 is a protein that in humans is encoded by the KRT16 gene.

<span class="mw-page-title-main">Amphiregulin</span> Protein-coding gene in the species Homo sapiens

Amphiregulin, also known as AREG, is a protein synthesized as a transmembrane glycoprotein with 252 aminoacids and it is encoded by the AREG gene. in humans.

<span class="mw-page-title-main">S100 protein</span> Family of vertebrate proteins involved in cell division and inflammation

The S100 proteins are a family of low molecular-weight proteins found in vertebrates characterized by two calcium-binding sites that have helix-loop-helix ("EF-hand-type") conformation. At least 21 different S100 proteins are known. They are encoded by a family of genes whose symbols use the S100 prefix, for example, S100A1, S100A2, S100A3. They are also considered as damage-associated molecular pattern molecules (DAMPs), and knockdown of aryl hydrocarbon receptor downregulates the expression of S100 proteins in THP-1 cells.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 7</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 7 or SMAD7 is a protein that in humans is encoded by the SMAD7 gene.

<span class="mw-page-title-main">Keratin 8</span>

Keratin, type II cytoskeletal 8 also known as cytokeratin-8 (CK-8) or keratin-8 (K8) is a keratin protein that is encoded in humans by the KRT8 gene. It is often paired with keratin 18.

<span class="mw-page-title-main">TP63</span> Protein-coding gene in the species Homo sapiens

Tumor protein p63, typically referred to as p63, also known as transformation-related protein 63 is a protein that in humans is encoded by the TP63 gene.

<span class="mw-page-title-main">S100-A4</span> Protein-coding gene in the species Homo sapiens

Protein S100-A4 (S100A4) is a protein that in humans is encoded by the S100A4 gene.

<span class="mw-page-title-main">S100A7</span>

S100 calcium-binding protein A7 (S100A7), also known as psoriasin, is a protein that in humans is encoded by the S100A7 gene.

<span class="mw-page-title-main">S100A2</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A2 (S100A2) is a protein that in humans is encoded by the S100A2 gene and it is located on chromosome 1q21 with other S100 proteins.

<span class="mw-page-title-main">Peroxiredoxin 1</span> Protein found in humans

Peroxiredoxin-1 is a protein that in humans is encoded by the PRDX1 gene.

<span class="mw-page-title-main">S100A11</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A11 (S100A11) is a protein that in humans is encoded by the S100A11 gene.

<span class="mw-page-title-main">S100P</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein P (S100P) is a protein that in humans is encoded by the S100P gene.

<span class="mw-page-title-main">FABP5</span> Protein-coding gene in the species Homo sapiens

Fatty acid-binding protein, epidermal is a protein that in humans is encoded by the FABP5 gene.

<span class="mw-page-title-main">DSC3</span> Protein-coding gene in the species Homo sapiens

Desmocollin-3 is a protein that in humans is encoded by the DSC3 gene.

Mouse models of colorectal cancer and intestinal cancer are experimental systems in which mice are genetically manipulated, fed a modified diet, or challenged with chemicals to develop malignancies in the gastrointestinal tract. These models enable researchers to study the onset, progression of the disease, and understand in depth the molecular events that contribute to the development and spread of colorectal cancer. They also provide a valuable biological system, to simulate human physiological conditions, suitable for testing therapeutics.

<span class="mw-page-title-main">S100A14</span> Protein-coding gene in the species Homo sapiens

S100 calcium binding protein A14 (S100A14) is a protein that in humans is encoded by the S100A14 gene.

The S100 calcium-binding protein mS100a7a15 is the murine ortholog of human S100A7 (Psoriasin) and human S100A15 (Koebnerisin). mS100a7a15 is also known as S100a15, mS100a7 and mS100a7a and is encoded by the mS100a7a gene

The epidermal differentiation complex (EDC) is a gene complex comprising over fifty genes encoding proteins involved in the terminal differentiation and cornification of keratinocytes, the primary cell type of the epidermis. In humans, the complex is located on a 1.9 Mbp stretch within chromosome 1q21. The proteins encoded by EDC genes are closely related in terms of function, and evolutionarily they belong to three distinct gene families: the cornified envelope precursor family, the S100 protein family and the S100 fused type protein (SFTP) family.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000184330 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Entrez Gene: S100 calcium binding protein A7A".
  4. 1 2 Wolf R, Mirmohammadsadegh A, Walz M, Lysa B, Tartler U, Remus R, Hengge U, Michel G, Ruzicka T (2003). "Molecular cloning and characterization of alternatively spliced mRNA isoforms from psoriatic skin encoding a novel member of the S100 family". FASEB J. 17 (13): 1969–71. doi:10.1096/fj.03-0148fje. PMID   12923069. S2CID   14817867.
  5. Wolf R, Ruzicka T, Yuspa SH (2011). "Novel S100A7 (psoriasin)/S100A15 (koebnerisin) subfamily: highly homologous but distinct in regulation and function". Amino Acids. 41 (4): 789–96. doi:10.1007/s00726-010-0666-4. PMC   6410564 . PMID   20596736.
  6. Zwicker S, Bureik D, Ruzicka T, Wolf R (2012). "[Friend or Foe?--Psoriasin and Koebnerisin: multifunctional defence molecules in skin differentiation, tumorigenesis and inflammation]". Dtsch. Med. Wochenschr. (in German). 137 (10): 491–4. doi:10.1055/s-0031-1299015. PMID   22374659. S2CID   196460709.
  7. Gauglitz GG, Bureik D, Zwicker S, Ruzicka T, Wolf R (2014). "The Antimicrobial Peptides Psoriasin (S100A7) and Koebnerisin (S100A15) Suppress Extracellular Matrix Production and Proliferation of Human Fibroblasts". Skin Pharmacol Physiol. 28 (3): 115–123. doi:10.1159/000363579. PMID   25502330. S2CID   23694258.
  8. 1 2 Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J, Divi R, Gunsior M, Goldsmith P, Ahvazi B, Chavakis T, Oppenheim JJ, Yuspa SH (2008). "Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15". J. Immunol. 181 (2): 1499–506. doi:10.4049/jimmunol.181.2.1499. PMC   2435511 . PMID   18606705.
  9. Zhang X, Sharma AM, Uetrecht J (Sep 2013). "Identification of danger signals in nevirapine-induced skin rash". Chemical Research in Toxicology. 26 (9): 1378–83. doi:10.1021/tx400232s. PMID   23947594.
  10. de Castro A, Minty F, Hattinger E, Wolf R, Parkinson EK (2014). "The secreted protein S100A7 (psoriasin) is induced by telomere dysfunction in human keratinocytes independently of a DNA damage response and cell cycle regulators". Longevity & Healthspan. 3: 8. doi: 10.1186/2046-2395-3-8 . PMC   4304136 . PMID   25621169.
  11. 1 2 Wolf R, Voscopoulos C, Winston J, Dharamsi A, Goldsmith P, Gunsior M, Vonderhaar BK, Olson M, Watson PH, Yuspa SH (2009). "Highly homologous hS100A15 and hS100A7 proteins are distinctly expressed in normal breast tissue and breast cancer". Cancer Lett. 277 (1): 101–7. doi:10.1016/j.canlet.2008.11.032. PMC   2680177 . PMID   19136201.
  12. Büchau AS, Hassan M, Kukova G, Lewerenz V, Kellermann S, Würthner JU, Wolf R, Walz M, Gallo RL, Ruzicka T (2007). "S100A15, an antimicrobial protein of the skin: regulation by E. coli through Toll-like receptor 4". J. Invest. Dermatol. 127 (11): 2596–604. doi: 10.1038/sj.jid.5700946 . PMID   17625598.
  13. Wolf R, Mascia F, Dharamsi A, Howard OM, Cataisson C, Bliskovski V, Winston J, Feigenbaum L, Lichti U, Ruzicka T, Chavakis T, Yuspa SH (2010). "Gene from a psoriasis susceptibility locus primes the skin for inflammation". Sci Transl Med. 2 (61): 61ra90. doi:10.1126/scitranslmed.3001108. PMC   6334290 . PMID   21148126.
  14. 1 2 Wolf R, Lewerenz V, Büchau AS, Walz M, Ruzicka T (2007). "Human S100A15 splice variants are differentially expressed in inflammatory skin diseases and regulated through Th1 cytokines and calcium". Exp. Dermatol. 16 (8): 685–91. doi:10.1111/j.1600-0625.2007.00587.x. PMID   17620096. S2CID   39343922.
  15. Hegyi Z, Zwicker S, Bureik D, Peric M, Koglin S, Batycka-Baran A, Prinz JC, Ruzicka T, Schauber J, Wolf R (2012). "Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 "alarmins" psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis". J. Invest. Dermatol. 132 (5): 1416–24. doi: 10.1038/jid.2011.486 . PMID   22402441.
  16. Kulski JK, Lim CP, Dunn DS, Bellgard M (2003). "Genomic and phylogenetic analysis of the S100A7 (Psoriasin) gene duplications within the region of the S100 gene cluster on human chromosome 1q21". J. Mol. Evol. 56 (4): 397–406. Bibcode:2003JMolE..56..397K. doi:10.1007/s00239-002-2410-5. PMID   12664160. S2CID   39365917.
  17. 1 2 Wolf R, Voscopoulos CJ, FitzGerald PC, Goldsmith P, Cataisson C, Gunsior M, Walz M, Ruzicka T, Yuspa SH (2006). "The mouse S100A15 ortholog parallels genomic organization, structure, gene expression, and protein-processing pattern of the human S100A7/A15 subfamily during epidermal maturation". J. Invest. Dermatol. 126 (7): 1600–8. doi: 10.1038/sj.jid.5700210 . PMID   16528363.
  18. Murray JI, Tonkin ML, Whiting AL, Peng F, Farnell B, Cullen JT, Hof F, Boulanger MJ (2012). "Structural characterization of S100A7A reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding". BMC Struct. Biol. 12: 16. doi: 10.1186/1472-6807-12-16 . PMC   3434032 . PMID   22747601.
  19. Boeshans KM, Wolf R, Voscopoulos C, Gillette W, Esposito D, Mueser TC, Yuspa SH, Ahvazi B (2006). "Purification, crystallization and preliminary X-ray diffraction of human S100A15". Acta Crystallographica Section F. 62 (Pt 5): 467–70. doi:10.1107/S1744309106012838. PMC   2219979 . PMID   16682778.
  20. "Entrez Gene: S100a7a S100 calcium binding protein".
  21. Briso EM, Guinea-Viniegra J, Bakiri L, Rogon Z, Petzelbauer P, Eils R, Wolf R, Rincón M, Angel P, Wagner EF (2013). "Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos". Genes Dev. 27 (18): 1959–73. doi:10.1101/gad.223339.113. PMC   3792473 . PMID   24029918.
  22. Nasser MW, Qamri Z, Deol YS, Ravi J, Powell CA, Trikha P, Schwendener RA, Bai XF, Shilo K, Zou X, Leone G, Wolf R, Yuspa SH, Ganju RK (2012). "S100A7 enhances mammary tumorigenesis through upregulation of inflammatory pathways". Cancer Res. 72 (3): 604–15. doi:10.1158/0008-5472.CAN-11-0669. PMC   3271140 . PMID   22158945.
  23. Nasser MW, Wani N, Ahirwar DK, Powell CA, Ravi J, Elbaz MM, Zhao H, Padilla L, Zhang X, Shilo K, Ostrowski MC, Shapiro CL, Carson WE, Ganju RK (2015). "RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment". Cancer Res. 75 (6): 974–85. doi:10.1158/0008-5472.CAN-14-2161. PMC   4359968 . PMID   25572331.