S100A7A | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | S100A7A , NICE-2, S100A15, S100A7L1, S100A7f, S100 calcium binding protein A7A, NICE2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 617427 GeneCards: S100A7A | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Protein S100-A7A (S100A7A), also known as koebnerisin, is a protein that in humans is encoded by the S100A7A (alias: S100A15) gene. [3]
S100 proteins are a diverse calcium-binding family that regulate fundamental cellular and extracellular processes including cell proliferation and differentiation, cell migration, and the antimicrobial host defense as antimicrobial peptides.
Koebnerisin (S100A7A) was first identified upregulated in inflammation-prone psoriatic skin, suggesting involvement in the lesional phenotype of the disease, [4] Koebner phenomenon. Today, the protein is of further interest because of its role in antimicrobial defence, innate immunity, epidermal cell maturation and epithelial tumorigenesis. [5] [6]
Skin: In normal epidermis, koebnerisin (S100A7A) is expressed by epidermal basal and differentiated keratinocytes, melanocytes, and Langerhans cells. Within the pilosebaceous unit, S100A7A is found in the inner and external root sheath and the basal layer of the sebaceous gland. In the dermis, koebnerisin (S100A7A) is produced by dendritic cells, smooth muscle cells, endothelial cells, as well as fibroblasts to control tissue regeneration. [7] [8] [9] [10]
Breast: Koebnerisin (S100A7A) is expressed by alveolar and small duct luminal cells and by epithelial-derived myoepithelial cells around acini and by surrounding blood vessels. [11]
Koebnerisin (S100A7A) functions as an antimicrobial peptide (AMP) reducing survival of E. coli and was strongly regulated by several bacterial components, such as Pseudomonas aeruginosa and Staphylococcus aureus . Thus, koebnerisin participates in the antimicrobial host defence of the skin and in the digestive tract of breast-feeding newborns. [12]
Breast cancer: Koebnerisin (S100A7A) is overexpressed in ER/PR negative tumors suggesting a regulation with tumor progression. [11] The secreted koebnerisin (S100A7A) acts as a chemoattractant, [8] enhances inflammation and thus could drive breast carcinogenesis.
Koebnerisin (S100A7A) is overexpressed in inflammatory skin diseases, such as psoriasis and eczema. [13] It is regulated through Th1 and Th17 but not Th2 proinflammatory cytokines. [14] [15] When released into the extracellar space, koebnerisin (S100A7A) induces inflammation. It acts as a chemoattractant for myeloid leukocytes through a pertussis toxin sensitive Gi protein coupled receptor. Koebnerisin (S100A7A) amplifies inflammation with related psoriasin (S100A7) that is co-regulated and proinflammatory through RAGE.
Koebnerisin (S100A7A) maps to the S100 gene cluster within the epidermal differentiation complex (EDC, chromosome 1q21) and reveals an unusual genomic organization compared to other S100 members. The two alternative mRNA-isoforms of koebnerisin share the same coding region, but show differences in composition and length of adjacent untranslated regions (S100A7A-short (S): 0.5 kb vs. hS100A7A-long (L): 4.4 kb). Both splice variants are differently regulated in inflammatory skin diseases suggesting usage of alternate promoters. [4] [14]
The amino acid sequence reveals a conserved C-terminal and a variant N-terminal EF-hand typical for S100 proteins (101 amino acids, 11.305 Da, calculated pI of 7.57 kDa). Compared to most S100 proteins, koebnerisin (S100A7A) is basic.
Koebnerisin (S100A7A) has lately evolved by gene duplications within the Epidermal Differentiation Complex (EDC, chromosome 1q21) during primate evolution forming a novel S100 subfamily together with Psoriasin (S100A7). [16] [17] Therefore, koebnerisin is almost identical to psoriasin in sequence (>90%). Despite their high homology, koebnerisin (S100A7A) and psoriasin (S100A7) are distinct in tissue distribution, regulation, structure [18] [19] and function and, thus exemplary for the diversity within the S100 family. Their different properties are compelling reasons to discriminate S100A7A (koebnerisin) and S100A7 (psoriasin) in epithelial homeostasis, inflammation and cancer.
Koebnerisin (S100A7A) and psoriasin (S100A7) share a common protein in mice encoded by the S100a7a15 (alias: mS100A7, mS100A15, mS100a7a) gene. [20] It can be used to study the significance of the corresponding human proteins for epidermal maturation, inflammation and epithelial carcinogenesis. [17] [21] [22] [23]
Keratinocytes are the primary type of cell found in the epidermis, the outermost layer of the skin. In humans, they constitute 90% of epidermal skin cells. Basal cells in the basal layer of the skin are sometimes referred to as basal keratinocytes. Keratinocytes form a barrier against environmental damage by heat, UV radiation, water loss, pathogenic bacteria, fungi, parasites, and viruses. A number of structural proteins, enzymes, lipids, and antimicrobial peptides contribute to maintain the important barrier function of the skin. Keratinocytes differentiate from epidermal stem cells in the lower part of the epidermis and migrate towards the surface, finally becoming corneocytes and eventually be shed off, which happens every 40 to 56 days in humans.
Keratin, type I cytoskeletal 10 also known as cytokeratin-10 (CK-10) or keratin-10 (K10) is a protein that in humans is encoded by the KRT10 gene. Keratin 10 is a type I keratin.
Keratin 16 is a protein that in humans is encoded by the KRT16 gene.
Amphiregulin, also known as AREG, is a protein synthesized as a transmembrane glycoprotein with 252 aminoacids and it is encoded by the AREG gene. in humans.
The S100 proteins are a family of low molecular-weight proteins found in vertebrates characterized by two calcium-binding sites that have helix-loop-helix ("EF-hand-type") conformation. At least 21 different S100 proteins are known. They are encoded by a family of genes whose symbols use the S100 prefix, for example, S100A1, S100A2, S100A3. They are also considered as damage-associated molecular pattern molecules (DAMPs), and knockdown of aryl hydrocarbon receptor downregulates the expression of S100 proteins in THP-1 cells.
Mothers against decapentaplegic homolog 7 or SMAD7 is a protein that in humans is encoded by the SMAD7 gene.
Keratin, type II cytoskeletal 8 also known as cytokeratin-8 (CK-8) or keratin-8 (K8) is a keratin protein that is encoded in humans by the KRT8 gene. It is often paired with keratin 18.
Tumor protein p63, typically referred to as p63, also known as transformation-related protein 63 is a protein that in humans is encoded by the TP63 gene.
Protein S100-A4 (S100A4) is a protein that in humans is encoded by the S100A4 gene.
S100 calcium-binding protein A7 (S100A7), also known as psoriasin, is a protein that in humans is encoded by the S100A7 gene.
S100 calcium-binding protein A2 (S100A2) is a protein that in humans is encoded by the S100A2 gene and it is located on chromosome 1q21 with other S100 proteins.
Peroxiredoxin-1 is a protein that in humans is encoded by the PRDX1 gene.
S100 calcium-binding protein A11 (S100A11) is a protein that in humans is encoded by the S100A11 gene.
S100 calcium-binding protein P (S100P) is a protein that in humans is encoded by the S100P gene.
Fatty acid-binding protein, epidermal is a protein that in humans is encoded by the FABP5 gene.
Desmocollin-3 is a protein that in humans is encoded by the DSC3 gene.
Mouse models of colorectal cancer and intestinal cancer are experimental systems in which mice are genetically manipulated, fed a modified diet, or challenged with chemicals to develop malignancies in the gastrointestinal tract. These models enable researchers to study the onset, progression of the disease, and understand in depth the molecular events that contribute to the development and spread of colorectal cancer. They also provide a valuable biological system, to simulate human physiological conditions, suitable for testing therapeutics.
S100 calcium binding protein A14 (S100A14) is a protein that in humans is encoded by the S100A14 gene.
The S100 calcium-binding protein mS100a7a15 is the murine ortholog of human S100A7 (Psoriasin) and human S100A15 (Koebnerisin). mS100a7a15 is also known as S100a15, mS100a7 and mS100a7a and is encoded by the mS100a7a gene
The epidermal differentiation complex (EDC) is a gene complex comprising over fifty genes encoding proteins involved in the terminal differentiation and cornification of keratinocytes, the primary cell type of the epidermis. In humans, the complex is located on a 1.9 Mbp stretch within chromosome 1q21. The proteins encoded by EDC genes are closely related in terms of function, and evolutionarily they belong to three distinct gene families: the cornified envelope precursor family, the S100 protein family and the S100 fused type protein (SFTP) family.