ACP3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | ACP3 , 5'-NT, TM-PAP, ACP-3, acid phosphatase 3, acid phosphatase, prostate, ACPP | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 171790; MGI: 1928480; HomoloGene: 55552; GeneCards: ACP3; OMA:ACP3 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
EC number | 3.1.3.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Prostatic acid phosphatase (PAP), also prostatic specific acid phosphatase (PSAP), is an enzyme produced by the prostate. It may be found in increased amounts in men who have prostate cancer or other diseases.
The highest levels of acid phosphatase are found in metastasized prostate cancer. Diseases of the bone, such as Paget's disease or hyperparathyroidism, diseases of blood cells, such as sickle-cell disease or multiple myeloma or lysosomal storage diseases, such as Gaucher's disease, will show moderately increased levels.
Certain medications can cause temporary increases or decreases in acid phosphatase levels. Manipulation of the prostate gland through massage, biopsy or rectal exam before a test may increase the level.
Its physiological function may be associated with the liquefaction process of semen. [5]
PAP was used to monitor and assess progression of prostate cancer until the introduction of prostate specific antigen (PSA), which has now largely displaced it. Subsequent work, suggested that it has a role in prognosticating intermediate and high-risk prostate cancer, and led to renewed interest in it as a biomarker. [6]
PAP immunohistochemical staining is often used with PSA (staining), by pathologists, to help distinguish poorly differentiated carcinomas. For example, poorly differentiated prostate adenocarcinoma (prostate cancer) and urothelial carcinoma (bladder cancer) may appear similar under the microscope, but PAP and PSA staining can help differentiate them; [7] prostate adenocarcinoma often stains with PSA and/or PAP, while urothelial carcinoma does not.[ citation needed ]
PAP may play an important role in the transmission of HIV. Researchers at the University of Ulm in Germany found that PAP forms fibers made of amyloid. They called the fibers semen-derived enhancer of virus infection (SEVI) and showed that they capture HIV virions promoting their attachment to target cells. The association of PAP with HIV may increase the ability of the virus to infect human cells "by several orders of magnitude." PAP may be a future target of efforts to combat the spread of HIV infection. [8]
A study at the University of North Carolina and University of Helsinki suggested that PAP could have potent antinociceptive, antihyperalgesic, and antiallodynic effects that last longer than morphine. One dose of PAP lasted for up to three days, much longer than the five hours gained with a single dose of morphine. When in distress, nerve cells release a chemical known as adenosine triphosphate (ATP) which in turn invokes a painful sensation. ATP is broken down into AMP (adenosine monophosphate), which PAP converts into adenosine, a molecule known to suppress pain. [9] [10]
PAP was the first useful serum tumour marker and emerged in the 1940s and 1950s. [6]
The prostate is both an accessory gland of the male reproductive system and a muscle-driven mechanical switch between urination and ejaculation. It is found in all male mammals. It differs between species anatomically, chemically, and physiologically. Anatomically, the prostate is found below the bladder, with the urethra passing through it. It is described in gross anatomy as consisting of lobes and in microanatomy by zone. It is surrounded by an elastic, fibromuscular capsule and contains glandular tissue, as well as connective tissue.
LNCaP cells are a cell line of human cells commonly used in the field of oncology. LNCaP cells are androgen-sensitive human prostate adenocarcinoma cells derived from the left supraclavicular lymph node metastasis from a 50-year-old caucasian male in 1977. They are adherent epithelial cells growing in aggregates and as single cells.
Midkine, also known as neurite growth-promoting factor 2 (NEGF2), is a protein that in humans is encoded by the MDK gene.
Mucin-4 (MUC-4) is a mucin protein that in humans is encoded by the MUC4 gene. Like other mucins, MUC-4 is a high-molecular weight glycoprotein.
Receptor-binding cancer antigen expressed on SiSo cells is a protein that in humans is encoded by the EBAG9 gene.
Homeobox protein Nkx-3.1, also known as NKX3-1, NKX3, BAPX2, NKX3A and NKX3.1 is a protein that in humans is encoded by the NKX3-1 gene located on chromosome 8p. NKX3-1 is a prostatic tumor suppressor gene.
Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme that in humans is encoded by the PIM1 gene.
Serine/threonine-protein phosphatase 2A regulatory subunit B is an enzyme that in humans is encoded by the PPP2R4 gene.
Gamma-enolase, also known as enolase 2 (ENO2) or neuron specific enolase (NSE), is an enzyme that in humans is encoded by the ENO2 gene. Gamma-enolase is a phosphopyruvate hydratase.
Beta-microseminoprotein is a protein that in humans is encoded by the MSMB gene. For historical reasons, the scientific literature may also refer to this protein as Prostate secretory protein 94 (PSP94), microseminoprotein (MSP), microseminoprotein-beta (MSMB), beta-inhibitin, prostatic inhibin peptide (PIP), and inhibitin like material (ILM).
Hyaluronan synthase 2 is an enzyme that in humans is encoded by the HAS2 gene.
Lipid phosphate phosphohydrolase 1 also known as phosphatidic acid phosphatase 2a is an enzyme that in humans is encoded by the PPAP2A gene.
Cyclin-dependent kinase inhibitor 3 is an enzyme that in humans is encoded by the CDKN3 gene.
Hyaluronan synthase 3 is an enzyme that in humans is encoded by the HAS3 gene.
Uroplakin-1a (UP1a) is a protein that in humans is encoded by the UPK1A gene.
Uroplakin-2 (UP2) is a protein that in humans is encoded by the UPK2 gene.
High-grade prostatic intraepithelial neoplasia (HGPIN) is an abnormality of prostatic glands and believed to precede the development of prostate adenocarcinoma.
Simon J. Hall is an American researcher who is the Associate Professor and Kyung Hyun Kim, M.D. Chair of Urology and Assistant Professor, Department of Gene and Cell Medicine at The Mount Sinai School of Medicine, as well as the Director of the Barbara and Maurice Deane Prostate Health and Research Center at The Mount Sinai Medical Center, both in New York City.
Dendreon is a biotechnology company. Its lead product, Provenge, is an immunotherapy for prostate cancer. It consists of a mixture of the patient's own blood cells that have been incubated with the Dendreon PAP-GM-CSF fusion protein. Phase III clinical trial results demonstrating a survival benefit for prostate cancer patients receiving the drug were presented at the AUA meeting on April 28, 2009. After going through the approval process, Provenge was given full approval by the FDA on April 29, 2010. Dendreon's stock value fell 66% on August 4, 2011, after abandoning its forecast for its debut drug Provenge.
Neuroendocrine differentiation is a term primarily used in relation to prostate cancers that display a significant neuroendocrine cell population on histopathological examination. These types of prostate cancer comprise true neuroendocrine cancers, such as small cell carcinoma, carcinoid and carcinoid-like tumors, as well as prostatic adenocarcinoma exhibiting focal neuroendocrine phenotype.