CEL | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CEL , BAL, BSDL, BSSL, CELL, CEase, FAP, FAPP, LIPA, MODY8, Bile salt-dependent lipase, carboxyl ester lipase | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 114840; MGI: 88374; HomoloGene: 37529; GeneCards: CEL; OMA:CEL - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Bile salt-dependent lipase (or BSDL), also known as carboxyl ester lipase (or CEL) is an enzyme produced by the adult pancreas and aids in the digestion of fats. Bile salt-stimulated lipase (or BSSL) is an equivalent enzyme found within breast milk. BSDL has been found in the pancreatic secretions of all species in which it has been looked for. BSSL, originally discovered in the milk of humans and various other primates, has since been found in the milk of many animals including dogs, cats, rats, and rabbits. [5]
More than 95% of the fat present in human milk and in infant formulas is in the form of triacylglycerols (TG). [6] In adults, TGs are thought to be broken down or hydrolyzed mainly by the colipase-dependent lipase (CDL) enzyme. In the newborn, CDL activity in the duodenum is lower than in adults. [6]
Both BSDL and BSSL have a broad substrate specificity and, like CDL, are capable of hydrolyzing triacylglycerides (in addition to phospholipids, esters of cholesterol, and lipid-soluble vitamins). In particular, they can hydrolyze esters of the essential fatty acids (n-3 and n-6 PUFAs) and DHA. [7] BSDL production in the newborn pancreas is quite low when compared with production in the mammary gland or adult pancreas. [8]
However, newborn infants absorb lipids relatively well, considering the low level of CDL and BSDL they produce. This observation has led to the suggestion that BSDL produced by lactating mammary gland and present within milk, may compensate for the low levels of other TG-digesting enzymes and aid newborns in lipid absorption. The importance of BSSL in breast milk for the preterm infant nutrition was suggested at 2007. [9] It was also directly shown recently. [10]
The duodenum is the first section of the small intestine in most higher vertebrates, including mammals, reptiles, and birds. In mammals, it may be the principal site for iron absorption. The duodenum precedes the jejunum and ileum and is the shortest part of the small intestine.
Digestive enzymes take part in the chemical process of digestion, which follows the mechanical process of digestion. Food consists of macromolecules of proteins, carbohydrates, and fats that need to be broken down chemically by digestive enzymes in the mouth, stomach, pancreas, and duodenum, before being able to be absorbed into the bloodstream. Initial breakdown is achieved by chewing (mastication) and the use of digestive enzymes of saliva. Once in the stomach further mechanical churning takes place mixing the food with secreted gastric acid. Digestive gastric enzymes take part in some of the chemical process needed for absorption. Most of the enzymatic activity, and hence absorption takes place in the duodenum.
Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:
Colipase, abbreviated CLPS, is a protein co-enzyme that counteracts the inhibitory effect of intestinal bile acid on the enzymatic activity of pancreatic lipase. It is secreted by the pancreas in an inactive form, procolipase, which is activated in the intestinal lumen by trypsin.
Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.
2-Arachidonoylglycerol (2-AG) is an endocannabinoid, an endogenous agonist of the CB1 receptor and the primary endogenous ligand for the CB2 receptor. It is an ester formed from the omega-6 fatty acid arachidonic acid and glycerol. It is present at relatively high levels in the central nervous system, with cannabinoid neuromodulatory effects. It has been found in maternal bovine and human milk. The chemical was first described in 1994–1995, although it had been discovered some time before that. The activities of phospholipase C (PLC) and diacylglycerol lipase (DAGL) mediate its formation. 2-AG is synthesized from arachidonic acid-containing diacylglycerol (DAG).
Hormone-sensitive lipase (EC 3.1.1.79, HSL), also previously known as cholesteryl ester hydrolase (CEH), sometimes referred to as triacylglycerol lipase, is an enzyme that, in humans, is encoded by the LIPE gene, and catalyzes the following reaction:
The liver receptor homolog-1 (LRH-1) also known as totipotency pioneer factor NR5A2 is a protein that in humans is encoded by the NR5A2 gene. LRH-1 is a member of the nuclear receptor family of intracellular transcription factors.
Gastric lipase, also known as LIPF, is an enzymatic protein that, in humans, is encoded by the LIPF gene.
The G protein-coupled bile acid receptor 1 (GPBAR1) also known as G-protein coupled receptor 19 (GPCR19), membrane-type receptor for bile acids (M-BAR) or Takeda G protein-coupled receptor 5 (TGR5) is a protein that in humans is encoded by the GPBAR1 gene. Activated by bile acids, these receptors play a crucial role in metabolic regulation, including insulin secretion and energy balance, and are found in the gastrointestinal tract as well as other tissues throughout the body.
Phospholipase A2, group 1B is an enzyme that in humans is encoded by the PLA2G1B gene.
Sterol O-acyltransferase 2, also known as SOAT2, is an enzyme that in humans is encoded by the SOAT2 gene.
Fatty acid binding protein 6, ileal (gastrotropin), also known as FABP6, is a protein which in humans is encoded by the FABP6 gene.
Pancreatic secretory granule membrane major glycoprotein GP2 is a protein that in humans is encoded by the GP2 gene.
Triglyceride lipases are a family of lipolytic enzymes that hydrolyse ester linkages of triglycerides. Lipases are widely distributed in animals, plants and prokaryotes.
Bile acid-CoA:amino acid N-acyltransferase is an enzyme that in humans is encoded by the BAAT gene.
Acyl-CoA thioesterase 2, also known as ACOT2, is an enzyme which in humans is encoded by the ACOT2 gene.
Acyl-protein thioesterase 1 is an enzyme that in humans is encoded by the LYPLA1 gene.
Ectonucleotide pyrophosphatase/phosphodiesterase family member 7 also known as alkaline sphingomyelin phosphodiesterase (Alk-SMase) or intestinal alkaline sphingomyelinase is an enzyme that in humans is encoded by the ENPP7 gene.
In biochemistry, lipase refers to a class of enzymes that catalyzes the hydrolysis of fats. Some lipases display broad substrate scope including esters of cholesterol, phospholipids, and of lipid-soluble vitamins and sphingomyelinases; however, these are usually treated separately from "conventional" lipases. Unlike esterases, which function in water, lipases "are activated only when adsorbed to an oil–water interface". Lipases perform essential roles in digestion, transport and processing of dietary lipids in most, if not all, organisms.