Hepatic lipase

Last updated
LIPC
Identifiers
Aliases LIPC , HDLCQ12, HL, HTGL, LIPH, lipase C, hepatic type
External IDs OMIM: 151670 MGI: 96216 HomoloGene: 199 GeneCards: LIPC
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000236

NM_008280
NM_001324472
NM_001324473

RefSeq (protein)

NP_000227

NP_001311401
NP_001311402
NP_032306

Location (UCSC) Chr 15: 58.41 – 58.57 Mb Chr 9: 70.71 – 70.86 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Hepatic lipase (HL), also called hepatic triglyceride lipase (HTGL) or LIPC (for "lipase, hepatic"), is a form of lipase, catalyzing the hydrolysis of triacylglyceride. Hepatic lipase is coded by chromosome 15 and its gene is also often referred to as HTGL or LIPC. [5] Hepatic lipase is expressed mainly in liver cells, known as hepatocytes, and endothelial cells of the liver. The hepatic lipase can either remain attached to the liver or can unbind from the liver endothelial cells and is free to enter the body's circulation system. [6] When bound on the endothelial cells of the liver, it is often found bound to heparan sulfate proteoglycans (HSPG), keeping HL inactive and unable to bind to HDL (high-density lipoprotein) or IDL (intermediate-density lipoprotein). [7] When it is free in the bloodstream, however, it is found associated with HDL to maintain it inactive. This is because the triacylglycerides in HDL serve as a substrate, but the lipoprotein contains proteins around the triacylglycerides that can prevent the triacylglycerides from being broken down by HL. [8]

Contents

One of the principal functions of hepatic lipase is to convert intermediate-density lipoprotein (IDL) to low-density lipoprotein (LDL). Hepatic lipase thus plays an important role in triglyceride level regulation in the blood by maintaining steady levels of IDL, HDL and LDL. [5]

Horse pancreatic lipase; believed to have a similar structure to Homo sapiens hepatic lipase as both show similar amino acid sequences. Horse Pancreatic Lipase.png
Horse pancreatic lipase; believed to have a similar structure to Homo sapiens hepatic lipase as both show similar amino acid sequences.

Function

Hepatic lipase falls under a class of enzymes known as hydrolases. Its function is to hydrolyze triacylglycerol to diacylglycerol and carboxylate (free fatty acids) with the addition of water. [10] The substrate, triacylglycerol, comes from IDL (intermediate-density lipoprotein) and the release of free fatty acids converts IDL into LDL (low-density lipoprotein). [7] These remaining remnants of LDL can be sent back to the liver, where it can be stored for later use or broken down to harness its energy. It can also be sent to peripheral cells for its cholesterol and used in anabolic pathways to build molecules that the cell needs such as hormones that include a cholesterol backbone. [11]

To prevent the build-up of plaque (also referred to as a lipid pool), nascent HDL molecules which are low in triglycerides, take off free fatty acids from the plaques through the help of ABCL1 proteins. These proteins help transfer free fatty acids from plaques in the arteries to HDL. [8] This process creates HDL3 (High density lipoprotein 3), a mature HDL molecule that has been esterified by another enzyme known as LCAT. [11] More free fatty acids can be taken up from the plaque by SR-B1 receptors, which convert HDL3 to HDL2 which contains higher concentrations of free fatty acids. [7] HDL2 can then interact with LDL and IDL by transferring over fatty acids that have accumulated in the plaque. Hepatic lipase can then catalyze the conversion of IDL to LDL by breaking down triacylglycerides in IDL and release free fatty acids to be used by other cells with low concentrations of cholesterol or stored in the liver for later use. [8]

The function of hepatic lipase in regulating the formation and degradation of plaque (lipid pools) in the arteries of an organism. Note that ABCL1 protein, by transferring fatty acids from the plaque to HDL, creates HDL3. The same process is followed by SRB1, converting HDL3 to HDL2. Hepatic lipase.jpg
The function of hepatic lipase in regulating the formation and degradation of plaque (lipid pools) in the arteries of an organism. Note that ABCL1 protein, by transferring fatty acids from the plaque to HDL, creates HDL3. The same process is followed by SRB1, converting HDL3 to HDL2.

Hepatic lipase regulation

The human body contains two inactive forms of HL. One inactive form is found on the liver bound to HSPG (heparin sulfate proteoglycans) and the second inactive form is found in the blood bound to HDL, inactivated by the proteins on the surface of the lipoprotein. The activation of HL occurs in two steps. First, HDL that makes its way to the liver, binds to HL thereby removing the heparan sulfate proteoglycan and freeing up the hepatic lipase into the bloodstream, but HL is still inactive due to the proteins on the surface of the lipoprotein. Second, HDL unbinds from HL to activate HL enzymes in the blood. [6]

HDL has been found to be regulated by electrostatic interactions with lipoproteins such as HDL. When HDL takes up free fatty acids from cells to prevent plaque build-up, it begins to increase its overall negative charge and instead stimulates HL to catalysis the triacylglycerides inside of VLDL (very low density lipoprotein). This is because the build-up of negative charge in HDL inhibits binding, but will allow HL to catalyze other lipoproteins. Other lipoproteins, such as ApoE, works in a similar way by inhibiting binding of HL and HDL but will allow HL to catalyze other lipoproteins. [8]

Other factors that contribute the regulation of HL are due to sex differences between women and men. It has been shown that women contain lower levels of ApoE along with an increased amount of free HL enzymes in their circulatory system when compared to men. The production of estrogen in women is also believed to reduce the activity of HL by serving as an inhibitor of gene transcription. [7]

Secretion of HDL from the liver into the circulatory system regulates the release of HL into the body's bloodstream. This is because factors that increase the release of HDL (such as fasting, leading to low levels of HDL) increases the amount of HL bound to HDL and released into the bloodstream. Another lipoprotein, ApoA-I, which increases release of HDL was shown to have a similar effect by mutating the gene that coded it. Mutated ApoA-I protein caused a decrease in HL release and thus decreased the amount of HL bound to HDL and released into the bloodstream. [7]

Clinical significance

Hepatic lipase deficiency is a rare, autosomal recessive disorder that results in elevated high-density lipoprotein (HDL) cholesterol due to a mutation in the hepatic lipase gene. Clinical features are not well understood and there are no characteristic xanthomas. There is an association with a delay in atherosclerosis in an animal model. [6]

In many studies that have been conducted, hepatic lipase is also closely related to obesity. In one test, an experiment was created by Cedó et al. where mouse cells were created to have a mutated HL protein that has lost its function. They found that a build-up of triglyceride levels led to nonalcoholic fatty liver disease. This was due to HL's inability to convert the triacylglycerides in IDL, and thereby creating LDL. Thus, the inability of endothelial cells to take up free fatty acids becomes higher and more IDL gets stored in the liver. This deficiency in HL also leads to liver inflammation and obesity problems. In the experiment though, mouse HL is found unbound to heparan sulfate proteoglycans (HSPG) whereas human HL is found attached to heparan sulfate proteoglycans (HSPG), deactivating HL until bound to IDL. More experiments must be performed to determine the potential effects in humans. [8]

Related Research Articles

<span class="mw-page-title-main">Cholesterol</span> Sterol biosynthesized by all animal cells

Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.

High-density lipoprotein (HDL) is one of the five major groups of lipoproteins. Lipoproteins are complex particles composed of multiple proteins which transport all fat molecules (lipids) around the body within the water outside cells. They are typically composed of 80–100 proteins per particle. HDL particles enlarge while circulating in the blood, aggregating more fat molecules and transporting up to hundreds of fat molecules per particle.

<span class="mw-page-title-main">Lipoprotein</span> Biochemical assembly whose purpose is to transport hydrophobic lipid molecules

A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, surrounded by a phospholipid outer shell, with the hydrophilic portions oriented outward toward the surrounding water and lipophilic portions oriented inward toward the lipid center. A special kind of protein, called apolipoprotein, is embedded in the outer shell, both stabilising the complex and giving it a functional identity that determines its role.

Very-low-density lipoprotein (VLDL), density relative to extracellular water, is a type of lipoprotein made by the liver. VLDL is one of the five major groups of lipoproteins that enable fats and cholesterol to move within the water-based solution of the bloodstream. VLDL is assembled in the liver from triglycerides, cholesterol, and apolipoproteins. VLDL is converted in the bloodstream to low-density lipoprotein (LDL) and intermediate-density lipoprotein (IDL). VLDL particles have a diameter of 30–80 nm. VLDL transports endogenous products, whereas chylomicrons transport exogenous (dietary) products. In the early 2010s both the lipid composition and protein composition of this lipoprotein were characterised in great detail.

<span class="mw-page-title-main">Chylomicron</span> One of the five major groups of lipoprotein

Chylomicrons, also known as ultra low-density lipoproteins (ULDL), are lipoprotein particles that consist of triglycerides (85–92%), phospholipids (6–12%), cholesterol (1–3%), and proteins (1–2%). They transport dietary lipids from the intestines to other locations in the body. ULDLs are one of the five major groups of lipoproteins that enable fats and cholesterol to move within the water-based solution of the bloodstream. A protein specific to chylomicrons is ApoB48.

<span class="mw-page-title-main">Gemfibrozil</span> Medication

Gemfibrozil, sold under the brand name Lopid among others, is a medication used to treat abnormal blood lipid levels. It is generally less preferred than statins. Use is recommended together with dietary changes and exercise. It is unclear if it changes the risk of heart disease. It is taken by mouth.

Intermediate-density lipoproteins (IDLs) belong to the lipoprotein particle family and are formed from the degradation of very low-density lipoproteins as well as high-density lipoproteins. IDL is one of the five major groups of lipoproteins that enable fats and cholesterol to move within the water-based solution of the bloodstream. Each native IDL particle consists of protein that encircles various lipids, enabling, as a water-soluble particle, these lipids to travel in the aqueous blood environment as part of the fat transport system within the body. Their size is, in general, 25 to 35 nm in diameter, and they contain primarily a range of triglycerides and cholesterol esters. They are cleared from the plasma into the liver by receptor-mediated endocytosis, or further degraded by hepatic lipase to form LDL particles.

<span class="mw-page-title-main">Lipoprotein lipase</span> Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:

<span class="mw-page-title-main">Apolipoprotein</span> Proteins that bind lipids to transport them in body fluids

Apolipoproteins are proteins that bind lipids to form lipoproteins. They transport lipids in blood, cerebrospinal fluid and lymph.

Hyperlipidemia is abnormally elevated levels of any or all lipids or lipoproteins in the blood. The term hyperlipidemia refers to the laboratory finding itself and is also used as an umbrella term covering any of various acquired or genetic disorders that result in that finding. Hyperlipidemia represents a subset of dyslipidemia and a superset of hypercholesterolemia. Hyperlipidemia is usually chronic and requires ongoing medication to control blood lipid levels.

<span class="mw-page-title-main">LDL receptor</span> Mammalian protein found in Homo sapiens

The low-density lipoprotein receptor (LDL-R) is a mosaic protein of 839 amino acids that mediates the endocytosis of cholesterol-rich low-density lipoprotein (LDL). It is a cell-surface receptor that recognizes apolipoprotein B100 (ApoB100), which is embedded in the outer phospholipid layer of very low-density lipoprotein (VLDL), their remnants—i.e. intermediate-density lipoprotein (IDL), and LDL particles. The receptor also recognizes apolipoprotein E (ApoE) which is found in chylomicron remnants and IDL. In humans, the LDL receptor protein is encoded by the LDLR gene on chromosome 19. It belongs to the low density lipoprotein receptor gene family. It is most significantly expressed in bronchial epithelial cells and adrenal gland and cortex tissue.

<span class="mw-page-title-main">Apolipoprotein B</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B (ApoB) is a protein that in humans is encoded by the APOB gene.

<span class="mw-page-title-main">VLDL receptor</span> Protein-coding gene in the species Homo sapiens

The very-low-density-lipoprotein receptor (VLDLR) is a transmembrane lipoprotein receptor of the low-density-lipoprotein (LDL) receptor family. VLDLR shows considerable homology with the members of this lineage. Discovered in 1992 by T. Yamamoto, VLDLR is widely distributed throughout the tissues of the body, including the heart, skeletal muscle, adipose tissue, and the brain, but is absent from the liver. This receptor has an important role in cholesterol uptake, metabolism of apolipoprotein E-containing triacylglycerol-rich lipoproteins, and neuronal migration in the developing brain. In humans, VLDLR is encoded by the VLDLR gene. Mutations of this gene may lead to a variety of symptoms and diseases, which include type I lissencephaly, cerebellar hypoplasia, and atherosclerosis.

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered as the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

Acid lipase disease or deficiency is a name used to describe two related disorders of fatty acid metabolism. Acid lipase disease occurs when the enzyme lysosomal acid lipase that is needed to break down certain fats that are normally digested by the body is lacking or missing. This results in the toxic buildup of these fats in the body's cells and tissues. These fatty substances, called lipids, include waxes, oils, and cholesterol.

<span class="mw-page-title-main">Apolipoprotein C-III</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-III also known as apo-CIII, and apolipoprotein C3, is a protein that in humans is encoded by the APOC3 gene. Apo-CIII is secreted by the liver as well as the small intestine, and is found on triglyceride-rich lipoproteins such as chylomicrons, very low density lipoprotein (VLDL), and remnant cholesterol.

Endothelial lipase (LIPG) is a form of lipase secreted by vascular endothelial cells in tissues with high metabolic rates and vascularization, such as the liver, lung, kidney, and thyroid gland. The LIPG enzyme is a vital component to many biological processes. These processes include lipoprotein metabolism, cytokine expression, and lipid composition in cells. Unlike the lipases that hydrolyze Triglycerides, endothelial lipase primarily hydrolyzes phospholipids. Due to the hydrolysis specificity, endothelial lipase contributes to multiple vital systems within the body. On the contrary to the beneficial roles that LIPG plays within the body, endothelial lipase is thought to play a potential role in cancer and inflammation. Knowledge obtained in vitro and in vivo suggest the relations to these conditions, but human interaction knowledge lacks due to the recent discovery of endothelial lipase. Endothelial lipase was first characterized in 1999. The two independent research groups which are notable for this discovery cloned the endothelial lipase gene and identified the novel lipase secreted from endothelial cells. The anti-Atherosclerosis opportunity through alleviating plaque blockage and prospective ability to raise High-density lipoprotein (HDL) have gained endothelial lipase recognition.

Blood lipids are lipids in the blood, either free or bound to other molecules. They are mostly transported in a phospholipid capsule, and the type of protein embedded in this outer shell determines the fate of the particle and its influence on metabolism. Examples of these lipids include cholesterol and triglycerides. The concentration of blood lipids depends on intake and excretion from the intestine, and uptake and secretion from cells. Hyperlipidemia is the presence of elevated or abnormal levels of lipids and/or lipoproteins in the blood, and is a major risk factor for cardiovascular disease.

<span class="mw-page-title-main">APOA5</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-V is a protein that in humans is encoded by the APOA5 gene on chromosome 11. It is significantly expressed in liver. The protein encoded by this gene is an apolipoprotein and an important determinant of plasma triglyceride levels, a major risk factor for coronary artery disease. It is a component of several lipoprotein fractions including VLDL, HDL, chylomicrons. It is believed that apoA-V affects lipoprotein metabolism by interacting with LDL-R gene family receptors. Considering its association with lipoprotein levels, APOA5 is implicated in metabolic syndrome. The APOA5 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

Reverse cholesterol transport is a multi-step process resulting in the net movement of cholesterol from peripheral tissues back to the liver first via entering the lymphatic system, then the bloodstream.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000166035 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032207 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Fox SI (2015). Human physiology (Fourteenth ed.). New York, NY. ISBN   978-0-07-783637-5. OCLC   895500922.
  6. 1 2 3 Karackattu SL, Trigatti B, Krieger M (March 2006). "Hepatic lipase deficiency delays atherosclerosis, myocardial infarction, and cardiac dysfunction and extends lifespan in SR-BI/apolipoprotein E double knockout mice". Arteriosclerosis, Thrombosis, and Vascular Biology. 26 (3): 548–54. doi: 10.1161/01.ATV.0000202662.63876.02 . PMID   16397139.
  7. 1 2 3 4 5 Chatterjee C, Sparks DL (April 2011). "Hepatic lipase, high density lipoproteins, and hypertriglyceridemia". The American Journal of Pathology. 178 (4): 1429–33. doi:10.1016/j.ajpath.2010.12.050. PMC   3078429 . PMID   21406176.
  8. 1 2 3 4 5 Cedó L, Santos D, Roglans N, Julve J, Pallarès V, Rivas-Urbina A, Llorente-Cortes V, Laguna JC, Blanco-Vaca F, Escolà-Gil JC (2017). "Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake". PLOS ONE. 12 (12): e0189834. Bibcode:2017PLoSO..1289834C. doi: 10.1371/journal.pone.0189834 . PMC   5731695 . PMID   29244870.
  9. Bourne, Y.; Cambillau, C. (1994). "Horse Pancreatic Lipase. The Crystal Structure at 2.3 Angstroms Resolution". J. Mol. Biol. 238. doi:10.2210/pdb1hpl/pdb.
  10. "Hepatic triacylglycerol lipase - P11150 (LIPC_HUMAN)". RCSB Protein Data Bank. Archived from the original on 2018-06-12. Retrieved 2018-02-07.
  11. 1 2 Sanan DA, Fan J, Bensadoun A, Taylor JM (May 1997). "Hepatic lipase is abundant on both hepatocyte and endothelial cell surfaces in the liver". Journal of Lipid Research. 38 (5): 1002–13. doi: 10.1016/S0022-2275(20)37224-2 . PMID   9186917.

Further reading