Plant lipid transfer proteins

Last updated
Plant lipid transfer protein / bifunctional inhibitor / seed storage protein, 4-helical domain
Surface 1UVB.png
Oryza sativa Lipid Transfer Protein 1 bound to palmitic acid (black). Positive charge in blue; negative charge in red ( PDB: 1UVB ).
Identifiers
SymbolLTP/seed_store/tryp_amyl_inhib
Pfam PF00234
Pfam clan CL0482
InterPro IPR016140
SMART SM00499
CATH 1UVB
SCOP2 1UVB / SCOPe / SUPFAM
CDD cd00010
Also Pfam PF13016, PF14368; see the Pfam clan relationships.

Plant lipid transfer proteins, also known as plant LTPs or PLTPs, are a group of highly-conserved proteins of about 7-9kDa found in higher plant tissues. [1] [2] As its name implies, lipid transfer proteins facilitate the shuttling of phospholipids and other fatty acid groups between cell membranes. [3] LTPs are divided into two structurally related subfamilies according to their molecular masses: LTP1s (9 kDa) and LTP2s (7 kDa). [4] Various LTPs bind a wide range of ligands, including fatty acids with a C10–C18 chain length, acyl derivatives of coenzyme A, phospho- and galactolipids, prostaglandin B2, sterols, molecules of organic solvents, and some drugs. [2]

Contents

The LTP domain is also found in seed storage proteins (including 2S albumin, gliadin, and glutelin) and bifunctional trypsin/alpha-amylase inhibitors. [5] [6] [7] [8] These proteins share the same superhelical, disulfide-stabilised four-helix bundle containing an internal cavity.

There is no sequence similarity between animal and plant LTPs. In animals, cholesteryl ester transfer protein, also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and triglycerides between the lipoproteins.

Function

Ordinarily, most lipids do not spontaneously exit membranes because their hydrophobicity makes them poorly soluble in water. LTPs facilitate the movement of lipids between membranes by binding, and solubilising them. LTPs typically have broad substrate specificity and so can interact with a variety of different lipids. [9]

LTPs are known to be pathogenesis-related proteins, i.e. proteins produced for pathogen defense by plants. Some LTPs are known to be antibacterial, antifungal, antiviral, and/or in vitro antiproliferative. [2] The enzyme inhibitor members are thought to regulate the development and germination of seeds as well as protect against insects and herbivores. [2]

LTPs in plants may be involved in:

Structure

Cartoon 1UVB.png
Structure of OsLTP1 (white) bound to palmitic acid (black). Disulfide bridges indicated in yellow.
Uncut 1UVB.png
Surface charge distribution. Positive charge in blue; negative charge in red.
Cut 1UVB.png
Cut-through showing internal charge distribution. Positive charge in blue; negative charge in red.
Oryza sativa Lipid Transfer Protein 1 bound to palmitic acid. ( PDB: 1UVB )

Plant lipid transfer proteins consist of 4 alpha-helices in a right-handed superhelix with a folded leaf topology. The structure is stabilised by disulfide bridges linking the helices to each other.

The structure forms an internal hydrophobic cavity in which 1-2 lipids can be bound. The outer surface of the protein is hydrophilic, allowing the complex to be soluble. The use of hydrophobic interactions, with very few charged interactions, allows the protein to have broad specificity for a range of lipids. [9]

Role in human health

PLTPs are pan-allergens, [11] [12] and may be directly responsible for cases of food allergy. Pru p 3, the major allergen from peach, is a 9-kDa allergen belonging to the family of lipid-transfer proteins. [13] Allergic properties are closely linked with high thermal stability and resistance to gastrointestinal proteolysis of the proteins. [14] They are class 1 (gastrointestinal) food allergens that cause a more systemic response than class 2 (respiratory) allergens. [4]

Plant LTPs are considered antioxidants in a small subset of researches. [15] Whether this has value for human health is unknown.

Commercial importance

Lipid transfer protein 1 (from barley) is responsible, when denatured by the mashing process, for the bulk of foam which forms on top of beer. [16]

Related Research Articles

Chymotrypsin Digestive enzyme

Chymotrypsin (EC 3.4.21.1, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenum, where it performs proteolysis, the breakdown of proteins and polypeptides. Chymotrypsin preferentially cleaves peptide amide bonds where the side chain of the amino acid N-terminal to the scissile amide bond (the P1 position) is a large hydrophobic amino acid (tyrosine, tryptophan, and phenylalanine). These amino acids contain an aromatic ring in their side chain that fits into a hydrophobic pocket (the S1 position) of the enzyme. It is activated in the presence of trypsin. The hydrophobic and shape complementarity between the peptide substrate P1 side chain and the enzyme S1 binding cavity accounts for the substrate specificity of this enzyme. Chymotrypsin also hydrolyzes other amide bonds in peptides at slower rates, particularly those containing leucine and methionine at the P1 position.

Ovalbumin Main protein found in egg white

Ovalbumin is the main protein found in egg white, making up approximately 55% of the total protein. Ovalbumin displays sequence and three-dimensional homology to the serpin superfamily, but unlike most serpins it is not a serine protease inhibitor. The function of ovalbumin is unknown, although it is presumed to be a storage protein.

Whey protein Protein supplement

Whey protein is a mixture of proteins isolated from whey, the liquid material created as a by-product of cheese production. The proteins consist of α-lactalbumin, β-lactoglobulin, serum albumin and immunoglobulins. Glycomacropeptide also makes up the third largest component but is not a protein. Whey protein is commonly marketed as a protein supplement, and various health claims have been attributed to it. A review published in 2010 in the European Food Safety Authority Journal concluded that the provided literature did not adequately support the proposed claims. For muscle growth, whey protein has been shown to be slightly better compared to other types of protein, such as casein or soy.

Apolipoprotein Proteins that bind lipids to transport them in body fluids

Apolipoproteins are proteins that bind lipids to form lipoproteins. They transport lipids in blood, cerebrospinal fluid and lymph.

Farnesyltransferase is one of the three enzymes in the prenyltransferase group. Farnesyltransferase (FTase) adds a 15-carbon isoprenoid called a farnesyl group to proteins bearing a CaaX motif: a four-amino acid sequence at the carboxyl terminus of a protein. Farnesyltransferase's targets include members of the Ras superfamily of small GTP-binding proteins critical to cell cycle progression. For this reason, several FTase inhibitors are undergoing testing as anti-cancer agents. FTase inhibitors have shown efficacy as anti-parasitic agents, as well. FTase is also believed to play an important role in development of progeria and various forms of cancers.

Cholesteryl ester transfer protein

Cholesteryl ester transfer protein (CETP), also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and triglycerides between the lipoproteins. It collects triglycerides from very-low-density (VLDL) or Chylomicrons and exchanges them for cholesteryl esters from high-density lipoproteins (HDL), and vice versa. Most of the time, however, CETP does a heteroexchange, trading a triglyceride for a cholesteryl ester or a cholesteryl ester for a triglyceride.

Soy allergy Type of food allergy caused by soy

Soy allergy is a type of food allergy. It is a hypersensitivity to ingesting compounds in soy, causing an overreaction of the immune system, typically with physical symptoms, such as gastrointestinal discomfort, respiratory distress, or a skin reaction. Soy is among the eight most common foods inducing allergic reactions in children and adults. It has a prevalence of about 0.3% in the general population.

Beta-lactoglobulin

β-Lactoglobulin (BLG) is the major whey protein of cow and sheep's milk, and is also present in many other mammalian species; a notable exception being humans. Its structure, properties and biological role have been reviewed many times. BLG is considered to be a milk allergen.

Geranylgeranyltransferase type 1 or simply geranylgeranyltransferase is one of the three enzymes in the prenyltransferase group. In specific terms, Geranylgeranyltransferase adds a 20-carbon isoprenoid called a geranylgeranyl group to proteins bearing a CaaX motif: a four-amino acid sequence at the carboxyl terminal of a protein. Geranylgeranyltransferase inhibitors are being investigated as anti-cancer agents.

Wheat allergy Medical condition

Wheat allergy is an allergy to wheat which typically presents itself as a food allergy, but can also be a contact allergy resulting from occupational exposure. Like all allergies, wheat allergy involves immunoglobulin E and mast cell response. Typically the allergy is limited to the seed storage proteins of wheat. Some reactions are restricted to wheat proteins, while others can react across many varieties of seeds and other plant tissues. Wheat allergy is rare. Prevalence in adults was found to be 0.21% in a 2012 study in Japan.

Lipocalin

The lipocalins are a family of proteins which transport small hydrophobic molecules such as steroids, bilins, retinoids, and lipids and most lipocalins are also able to bind to complexed iron as well as heme. They share limited regions of sequence homology and a common tertiary structure architecture. This is an eight stranded antiparallel beta barrel with a repeated + 1 topology enclosing an internal ligand binding site.

Oleosins are structural proteins found in vascular plant oil bodies and in plant cells. Oil bodies are not considered organelles because they have a single layer membrane and lack the pre-requisite double layer membrane in order to be considered an organelle. They are found in plant parts with high oil content that undergo extreme desiccation as part of their maturation process, and help stabilize the bodies.

Alpha-amylase Enzyme that hydrolyses alpha bonds of large alpha-linked polysaccharides

Alpha-amylase(α-amylase) is an enzyme that hydrolyses alpha bonds of large, alpha-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose. It is the major form of amylase found in humans and other mammals. It is also present in seeds containing starch as a food reserve, and is secreted by many fungi. It is a member of glycoside hydrolase family 13.

Alpha-1-microglobulin/bikunin precursor Protein-coding gene in the species Homo sapiens

Protein AMBP is a protein that in humans is encoded by the AMBP gene.

Corn allergy, also called maize allergy, is a very rare food allergy. People with a true IgE-mediated allergy to corn develop symptoms such as swelling or hives when they eat corn or foods that contain corn. The allergy can be difficult to manage due to many food and non-food products that contain various forms of corn, such as corn starch and modified food starch, among many others. It is an allergy that often goes unrecognized.

Bet v I allergen

Bet v I allergen is a family of protein allergens. Allergies are hypersensitivity reactions of the immune system to specific substances called allergens that, in most people, result in no symptoms.

StAR-related transfer domain

START is a lipid-binding domain in StAR, HD-ZIP and signalling proteins. The archetypical domain is found in StAR, a mitochondrial protein that is synthesized in steroid-producing cells. StAR initiates steroid production by mediating the delivery of cholesterol to the first enzyme in steroidogenic pathway. The START domain is critical for this activity, perhaps through the binding of cholesterol. Following the discovery of StAR, 15 START-domain-containing proteins were subsequently identified in vertebrates as well as other that are related.

Lipid-binding serum glycoprotein

In molecular biology, the lipid-binding serum glycoproteins family, also known as the BPI/LBP/Plunc family or LBP/BPI/CETP family represents a family which includes mammalian lipid-binding serum glycoproteins. Members of this family include:

Ara h1

Ara h 1 is a seed storage protein from Arachis hypogaea (peanuts). It is a heat stable 7S vicilin-like globulin with a stable trimeric form that comprises 12-16% of the total protein in peanut extracts. Ara h 1 is known because sensitization to it was found in 95% of peanut-allergic patients from North America. In spite of this high percentage, peanut-allergic patients of European populations have fewer sensitizations to Ara h 1.

Vicilin is a legumin-associated globulin protein. Vicilin can be described as a storage protein found in legumes such as the pea or lentil. Vicilin is a protein that protects plants from fungi and microorganism. It has been hypothesized it's an allergen in pea allergy responses.

References

  1. Asero R, Mistrello G, Roncarolo D, de Vries SC, Gautier MF, Ciurana CL, Verbeek E, Mohammadi T, Knul-Brettlova V, Akkerdaas JH, Bulder I, Aalberse RC, van Ree R (2001). "Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion". International Archives of Allergy and Immunology . 124 (1–3): 67–9. doi:10.1159/000053671. PMID   11306929. S2CID   40934840.
  2. 1 2 3 4 5 Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2016). "Lipid Transfer Proteins As Components of the Plant Innate Immune System: Structure, Functions, and Applications". Acta Naturae. 8 (2): 47–61. doi:10.32607/20758251-2016-8-2-47-61. PMC   4947988 . PMID   27437139.
  3. Kader JC (June 1996). "Lipid-Transfer Protein in Plants". Annual Review of Plant Physiology and Plant Molecular Biology . 47: 627–654. doi:10.1146/annurev.arplant.47.1.627. PMID   15012303.
  4. 1 2 Finkina EI, Melnikova DN, Bogdanov IV, Ovchinnikova TV (2017-07-04). "Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens". Current Medicinal Chemistry . 24 (17): 1772–1787. doi:10.2174/0929867323666161026154111. PMID   27784212.
  5. Lin KF, Liu YN, Hsu ST, Samuel D, Cheng CS, Bonvin AM, Lyu PC (April 2005). "Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean". Biochemistry. 44 (15): 5703–12. doi:10.1021/bi047608v. hdl: 1874/385163 . PMID   15823028.
  6. Pantoja-Uceda D, Bruix M, Giménez-Gallego G, Rico M, Santoro J (December 2003). "Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis". Biochemistry. 42 (47): 13839–47. doi:10.1021/bi0352217. PMID   14636051.
  7. Oda Y, Matsunaga T, Fukuyama K, Miyazaki T, Morimoto T (November 1997). "Tertiary and quaternary structures of 0.19 alpha-amylase inhibitor from wheat kernel determined by X-ray analysis at 2.06 A resolution". Biochemistry. 36 (44): 13503–11. doi:10.1021/bi971307m. PMID   9354618.
  8. Gourinath S, Alam N, Srinivasan A, Betzel C, Singh TP (March 2000). "Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution". Acta Crystallographica D . 56 (Pt 3): 287–93. doi:10.1107/s0907444999016601. PMID   10713515.
  9. 1 2 Cheng HC, Cheng PT, Peng P, Lyu PC, Sun YJ (September 2004). "Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa". Protein Science . 13 (9): 2304–15. doi:10.1110/ps.04799704. PMC   2280015 . PMID   15295114.
  10. Kader, Jean-Claude (February 1997). "Science Direct". Trends in Plant Science . 2 (2): 66–70. doi:10.1016/S1360-1385(97)82565-4.
  11. Morris A. "Food Allergy in Detail". Surrey Allergy Clinic.
  12. InterPro :  IPR000528
  13. Besler M, Herranz JC, Fernández-Rivas M (2000). "Peach allergy". Internet Symposium on Food Allergens. 2 (4): 185–201.
  14. Bogdanov IV, Shenkarev ZO, Finkina EI, Melnikova DN, Rumynskiy EI, Arseniev AS, Ovchinnikova TV (April 2016). "A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties". BMC Plant Biology . 16: 107. doi:10.1186/s12870-016-0792-6. PMC   4852415 . PMID   27137920.
  15. Halliwell B (1996). "Antioxidants in human health and disease". Annual Review of Nutrition . 16: 33–50. doi:10.1146/annurev.nu.16.070196.000341. PMID   8839918.
  16. "Foam". Carlsberg Research Laboratory. Archived from the original on 2016-03-03. Retrieved 2009-03-05.