Pathogenesis-related protein

Last updated

Pathogenesis-related (PR) proteins are proteins produced in plants in the event of a pathogen attack. [1] They are induced as part of systemic acquired resistance. Infections activate genes that produce PR proteins. Some of these proteins are antimicrobial, attacking molecules in the cell wall of a bacterium or fungus. Others may function as signals that spread “news” of the infection to nearby cells. Infections also stimulate the cross-linking of molecules in the cell wall and the deposition of lignin, responses that set up a local barricade that slows spread of the pathogen to other parts of the plant. [2]

Contents

Salicylic acid plays a role in the resistance to pathogens by inducing the production of pathogenesis-related proteins. [3] Many proteins found in wine are grape pathogen-related proteins. [4] Those include thaumatin-like proteins and chitinases.

Many pathogenesis-related protein families also coincide with groups of human allergens, even though the allergy may have nothing to do with the defense function of the proteins. [5] Grouping these proteins by their sequence features allows for finding potential allergenic proteins from sequenced plant genomes, a field of study dubbed "allergenomics". [6]

Classification

As of 2014, 17 families of PR proteins have been named: [5]

Different PR-protein families and allergens identified
FamilyDomain classificationProteinsFunctionsAllergens
PR-1 IPR034111

IPR001283

PR-1 a, PR-1 b, and PR-1 cAntifungal (CAP)Cuc m 3 (muskmelon; P83834 )—oral allergy syndrome
PR-2(GH17)β-1,3-GlucanasesCleaves β-1,3-glucans
  • Hev b 2 (latex; P52407 )—contact dermatitis
  • Ole e 9 (olive)—respiratory allergy
  • Mus a 5 (banana)—oral allergy syndrome
PR-3 IPR016283 Chitinase types I, II, IV, V, VI, and VIIEndochitinase
  • Pers a 1 (avocado)—itchy eyes or nose, asthma, swelling, and so forth.
  • Mus a 2 (banana)—food allergy like swelling of lips, anaphylaxis, and so forth
PR-4 IPR001153 Barwin domain chitinase I/IIAntifungal and chitinase Pro-heveins: Hev b 6—contact dermatitis
PR-5 IPR001938 Thaumatin-likeAntifungal
  • Jun a 3 (mountain cedar), Cry j 1 (Japanese cedar), and Cup a 3 (Arizona cypress)—rhinitis, conjunctivitis, and asthma
  • Pru av 2 (cherry), Mal d 2 (apple), Cap a 1 (bell pepper), Act d 2 (kiwi), and Mus a 4 (banana)—oral allergy syndrome
PR-6 IPR000864 Potato protease IProteinase inhibitor
PR-7(Subtilisin-like)Tomato endoproteinase P69 ( O82007 )Endoproteinase
PR-8(GH18)Cucumber chitinaseChitinase III
  • Hevamine (latex, P23472 )—contact dermatitis.
  • Ziz m 1 (Indian jujube, Q2VST0 )—oral allergy syndrome
  • Cof a 1 (coffee, D7REL9 )—eye and airway allergy
PR-9(Haem peroxidase III)Tobacco lignin-forming peroxidase ( P11965 )Peroxidase
PR-10 IPR024949

IPR000916

Parsley "PR-1"Ribonuclease-like
  • Bet v 1 (birch pollen)— allergic rhinoconjunctivitis and asthma
  • Pru av 1 (cherry), Mal  d  1 (apple), Api g 1 (celery), and Dau c 1 (carrot)—oral allergy syndrome
  • Gly m 4 (soy), Vig r 1 (mung bean), Cor a 1 (hazelnut), and Cas s 1 (chestnut), Act c 8 (golden kiwi fruit), Act d 8 (green kiwi fruit) —oral allergy syndrome
PR-11(GH18)Tobacco chitinase V ( Q43576 )Chitinase
PR-12 IPR008176 Radish Rs-AFP3 ( O24332 )Plant Defensin
PR-13 IPR001010 Arabidopsis THI2.1 ( Q42596 )Thionin
PR-14 IPR000528 Lipid transfer proteinsShuttling of phospholipids and fatty acids
  • Par j 1 (weed; P43217 )—rhinitis and asthma
  • Pru p 3 (peach), Mal d 3 (apple), Pru av 3 (cherry), Pru ar 3 (apricot), Cor a 8 (hazelnut), Cas s 8 (chestnut), and Zea m 14 (maize)—oral allergy syndrome
PR-15 IPR001929 Barley OxOa ( P45850 ) germin; Oxalate oxidase
PR-16 IPR001929 Barley OxOLP ( O49871 )germin-like
PR-17 IPR007541 Tobacco NtPRp27 ( Q9XIY9 )late blight resistance(?) [7]

Identification

As PR proteins are produced when plant tissue is stressed, various ways of stress signaling is used to "bait" the plant into expressing PR genes for identification. Useful stressors include an actual infection or simply defense signals such as salicylate and methyl jasmonate. The proteins can be identified by isolation, peptide digestion, and matching against the genomic sequences (protein sequencing). The sequences obtained can then be checked against known PR protein families for categorization. [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Salicylic acid</span> Chemical compound used in medicines and industry

Salicylic acid is an organic compound with the formula HOC6H4COOH. A colorless (or, white), bitter-tasting solid, it is a precursor to and a metabolite of acetylsalicylic acid (aspirin). It is a plant hormone, and has been listed by the EPA Toxic Substances Control Act (TSCA) Chemical Substance Inventory as an experimental teratogen. The name is from Latin salix for willow tree, from which it was initially identified and derived. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates.

<span class="mw-page-title-main">Chitinase</span> Enzymes which degrade or break chitin

Chitinases are hydrolytic enzymes that break down glycosidic bonds in chitin. They catalyse the following reaction:

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Thaumatin</span> Low-calorie sweetener and flavor modifier

Thaumatin is a low-calorie sweetener and flavor modifier. The protein is often used primarily for its flavor-modifying properties and not exclusively as a sweetener.

<span class="mw-page-title-main">Jasmonate</span> Lipid-based plant hormones

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

<span class="mw-page-title-main">Phytoalexin</span> Class of chemical compounds

Phytoalexins are antimicrobial substances, some of which are antioxidative as well. They are defined, not by their having any particular chemical structure or character, but by the fact that they are defensively synthesized de novo by plants that produce the compounds rapidly at sites of pathogen infection. In general phytoalexins are broad spectrum inhibitors; they are chemically diverse, and different chemical classes of compounds are characteristic of particular plant taxa. Phytoalexins tend to fall into several chemical classes, including terpenoids, glycosteroids, and alkaloids; however the term applies to any phytochemicals that are induced by microbial infection.

<span class="mw-page-title-main">Innate immune system</span> Immunity strategy in living beings

The innate immune system or nonspecific immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, prokaryotes, and invertebrates.

<span class="mw-page-title-main">Jasmonic acid</span> Chemical compound

Jasmonic acid (JA) is an organic compound found in several plants including jasmine. The molecule is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway. It was first isolated in 1957 as the methyl ester of jasmonic acid by the Swiss chemist Édouard Demole and his colleagues.

Systemic acquired resistance (SAR) is a "whole-plant" resistance response that occurs following an earlier localized exposure to a pathogen. SAR is analogous to the innate immune system found in animals, and although there are many shared aspects between the two systems, it is thought to be a result of convergent evolution. The systemic acquired resistance response is dependent on the plant hormone, salicylic acid.

<span class="mw-page-title-main">Systemin</span> Plant peptide hormone

Systemin is a plant peptide hormone involved in the wound response in the family Solanaceae. It was the first plant hormone that was proven to be a peptide having been isolated from tomato leaves in 1991 by a group led by Clarence A. Ryan. Since then, other peptides with similar functions have been identified in tomato and outside of the Solanaceae. Hydroxyproline-rich glycopeptides were found in tobacco in 2001 and AtPeps were found in Arabidopsis thaliana in 2006. Their precursors are found both in the cytoplasm and cell walls of plant cells, upon insect damage, the precursors are processed to produce one or more mature peptides. The receptor for systemin was first thought to be the same as the brassinolide receptor but this is now uncertain. The signal transduction processes that occur after the peptides bind are similar to the cytokine-mediated inflammatory immune response in animals. Early experiments showed that systemin travelled around the plant after insects had damaged the plant, activating systemic acquired resistance, now it is thought that it increases the production of jasmonic acid causing the same result. The main function of systemins is to coordinate defensive responses against insect herbivores but they also affect plant development. Systemin induces the production of protease inhibitors which protect against insect herbivores, other peptides activate defensins and modify root growth. They have also been shown to affect plants' responses to salt stress and UV radiation. AtPEPs have been shown to affect resistance against oomycetes and may allow A. thaliana to distinguish between different pathogens. In Nicotiana attenuata, some of the peptides have stopped being involved in defensive roles and instead affect flower morphology.

<span class="mw-page-title-main">Hypersensitive response</span>

Hypersensitive response (HR) is a mechanism used by plants to prevent the spread of infection by microbial pathogens. HR is characterized by the rapid death of cells in the local region surrounding an infection and it serves to restrict the growth and spread of pathogens to other parts of the plant. It is analogous to the innate immune system found in animals, and commonly precedes a slower systemic response, which ultimately leads to systemic acquired resistance (SAR). HR can be observed in the vast majority of plant species and is induced by a wide range of plant pathogens such as oomycetes, viruses, fungi and even insects.

<span class="mw-page-title-main">Plant lipid transfer proteins</span>

Plant lipid transfer proteins, also known as plant LTPs or PLTPs, are a group of highly-conserved proteins of about 7-9kDa found in higher plant tissues. As its name implies, lipid transfer proteins facilitate the shuttling of phospholipids and other fatty acid groups between cell membranes. LTPs are divided into two structurally related subfamilies according to their molecular masses: LTP1s (9 kDa) and LTP2s (7 kDa). Various LTPs bind a wide range of ligands, including fatty acids with a C10–C18 chain length, acyl derivatives of coenzyme A, phospho- and galactolipids, prostaglandin B2, sterols, molecules of organic solvents, and some drugs.

Biotic stress is stress that occurs as a result of damage done to an organism by other living organisms, such as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or native plants. It is different from abiotic stress, which is the negative impact of non-living factors on the organisms such as temperature, sunlight, wind, salinity, flooding and drought. The types of biotic stresses imposed on an organism depend the climate where it lives as well as the species' ability to resist particular stresses. Biotic stress remains a broadly defined term and those who study it face many challenges, such as the greater difficulty in controlling biotic stresses in an experimental context compared to abiotic stress.

<span class="mw-page-title-main">Plant disease resistance</span> Ability of a plant to stand up to trouble

Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant and the environmental conditions.

<span class="mw-page-title-main">Bet v I allergen</span>

Bet v I allergen is a family of protein allergens. Allergies are hypersensitivity reactions of the immune system to specific substances called allergens that, in most people, result in no symptoms.

In plant biology, elicitors are extrinsic or foreign molecules often associated with plant pests, diseases or synergistic organisms. Elicitor molecules can attach to special receptor proteins located on plant cell membranes. These receptors are able to recognize the molecular pattern of elicitors and trigger intracellular defence signalling via the octadecanoid pathway. This response results in the enhanced synthesis of metabolites which reduce damage and increase resistance to pest, disease or environmental stress. This is an immune response called pattern triggered immunity (PTI).

β-Aminobutyric acid Chemical compound

β-Aminobutyric acid (BABA) is an isomer of the amino acid aminobutyric acid with the chemical formula C4H9NO2. It has two isomers, α-aminobutyric acid and γ-aminobutyric acid (GABA), a neurotransmitter in animals that is also found in plants, where it may play a role in signalling. All three are non-proteinogenic amino acids, not being found in proteins. BABA is known for its ability to induce plant disease resistance, as well as increased resistance to abiotic stresses, when applied to plants.

Induced systemic resistance (ISR) is a resistance mechanism in plants that is activated by infection. Its mode of action does not depend on direct killing or inhibition of the invading pathogen, but rather on increasing physical or chemical barrier of the host plant. Like the Systemic Acquired Resistance (SAR) a plant can develop defenses against an invader such as a pathogen or parasite if an infection takes place. In contrast to SAR which is triggered by the accumulation of salicylic acid, ISR instead relies on signal transduction pathways activated by jasmonate and ethylene.

In plant biology, proteinase inhibitors are a family of small proteins that serve an integral role in the plant’s defense mechanisms against herbivory from insects or microorganisms that may compromise the integrity of the plant.

Plants are constantly exposed to different stresses that result in wounding. Plants have adapted to defend themselves against wounding events, like herbivore attacks or environmental stresses. There are many defense mechanisms that plants rely on to help fight off pathogens and subsequent infections. Wounding responses can be local, like the deposition of callose, and others are systemic, which involve a variety of hormones like jasmonic acid and abscisic acid.

References

  1. Loon LC (1985). "Pathogenesis-related proteins". Plant Molecular Biology. 4 (2–3): 111–116. doi:10.1007/BF02418757. PMID   24310747. S2CID   37281639.
  2. Campbell, N.A. and Reece, J.B. (2005). Biology (7th ed). San Francisco: Benjamin Cummings.
  3. Van Huijsduijnen RAMH; Alblas SW; De Rijk RH; Bol JF (1986). "Induction by Salicylic Acid of Pathogenesis-related Proteins and Resistance to Alfalfa Mosaic Virus Infection in Various Plant Species". Journal of General Virology. 67 (10): 2135–2143. doi: 10.1099/0022-1317-67-10-2135 .
  4. Waters EJ, Shirley NJ, Williams PJ (1996). "Nuisance Proteins of Wine Are Grape Pathogenesis-Related Proteins". Journal of Agricultural and Food Chemistry. 44 (1): 3–5. doi:10.1021/jf9505584.
  5. 1 2 Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Kaur, Punit; Sharma, Sujata; Singh, Tej P. (2014). "Current Overview of Allergens of Plant Pathogenesis Related Protein Families". The Scientific World Journal. 2014: 543195. doi: 10.1155/2014/543195 . PMC   3947804 . PMID   24696647. CC-BY icon.svg This article contains quotations from this source, which is available under the Creative Commons Attribution 3.0 (CC BY 3.0) license.
  6. Di Girolamo, F; Muraca, M; Mazzina, O; Lante, I; Dahdah, L (June 2015). "Proteomic applications in food allergy: food allergenomics". Current Opinion in Allergy and Clinical Immunology. 15 (3): 259–66. doi:10.1097/ACI.0000000000000160. PMID   25899690. S2CID   751042.
  7. Shi, X; Tian, Z; Liu, J; van der Vossen, EA; Xie, C (February 2012). "A potato pathogenesis-related protein gene, StPRp27, contributes to race-nonspecific resistance against Phytophthora infestans". Molecular Biology Reports. 39 (2): 1909–16. doi:10.1007/s11033-011-0937-5. PMID   21667110. S2CID   12384096.
  8. Elvira, M. I.; Galdeano, M. M.; Gilardi, P.; Garcia-Luque, I.; Serra, M. T. (19 March 2008). "Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants". Journal of Experimental Botany. 59 (6): 1253–1265. doi: 10.1093/jxb/ern032 . hdl: 10261/57734 . PMID   18375936.
  9. Sabater-Jara, AB; Almagro, L; Belchí-Navarro, S; Barceló, AR; Pedreño, MA (March 2011). "Methyl jasmonate induces extracellular pathogenesis-related proteins in cell cultures of Capsicum chinense". Plant Signaling & Behavior. 6 (3): 440–2. Bibcode:2011PlSiB...6..440S. doi:10.4161/psb.6.3.14451. PMC   3142433 . PMID   21346408.

Further reading

Creative Commons by small.svg  This article incorporates text by Mau Sinha, Rashmi Prabha Singh, Gajraj Singh Kushwaha, Naseer Iqbal, Avinash Singh, Sanket Kaushik, Punit Kaur, Sujata Sharma, and Tej P. Singh available under the CC BY 3.0 license.