Steroid sulfatase

Last updated
STS
Protein STS PDB 1p49.png
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases STS , ARSC, ARSC2, ARSC1, ASC, ES, SSDD, XLI, Steroid sulfatase (microsomal), isozyme S, steroid sulfatase
External IDs OMIM: 300747 HomoloGene: 47918 GeneCards: STS
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

RefSeq (protein)

n/a

Location (UCSC) Chr X: 7.15 – 7.8 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human
Steryl-sulfatase
Identifiers
EC no. 3.1.6.2
CAS no. 9025-62-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Steroid sulfatase (STS), or steryl-sulfatase (EC 3.1.6.2), formerly known as arylsulfatase C, is a sulfatase enzyme involved in the metabolism of steroids. It is encoded by the STS gene. [3]

Contents

Reactions

This enzyme catalyses the following chemical reaction

3β-hydroxyandrost-5-en-17-one 3-sulfate + H2O 3β-hydroxyandrost-5-en-17-one + sulfate

Also acts on some related steryl sulfates.

Function

The protein encoded by this gene catalyzes the conversion of sulfated steroid precursors to the free steroid. This includes DHEA sulfate, estrone sulfate, pregnenolone sulfate, and cholesterol sulfate, all to their unconjugated forms (DHEA, estrone, pregnenolone, and cholesterol, respectively). [4] [5] The encoded protein is found in the endoplasmic reticulum, where it is present as a homodimer. [3]

Distribution of STS and ESTTooltip estrogen sulfotransferase activities for interconversion of estrone (E1) and estrone sulfate (E1S) in adult human tissues. Estrogenic STS and EST activity.png
Distribution of STS and EST Tooltip estrogen sulfotransferase activities for interconversion of estrone (E1) and estrone sulfate (E1S) in adult human tissues.

Clinical significance

A congenital deficiency in the enzyme is associated with X-linked ichthyosis, a scaly-skin disease affecting roughly 1 in every 2,000 to 6,000 males. [7] [8] The excessive skin scaling and hyperkeratosis is caused by a lack of breakdown and thus accumulation of cholesterol sulfate, a steroid that stabilizes cell membranes and adds cohesion, in the outer layers of the skin. [4]

Genetic deletions including STS are associated with an increased risk of developmental and mood disorders (and associated traits), and of atrial fibrillation or atrial flutter in males. [9] Both steroid sulfatase deficiency and common genetic risk variants within STS may confer increased atrial fibrillation risk. [10] Cardiac arrhythmia in STS deficiency may be related to abnormal development of the interventricular septum or interatrial septum. [11] Blood-clotting abnormalities may occur more frequently in males with XLI and female carriers. [12] Knockdown of STS gene expression in human skin cell cultures affects pathways associated with skin function, brain and heart development, and blood-clotting that may be relevant for explaining the skin condition and increased likelihood of ADHD/autism, cardiac arrhythmias and disorders of hemostasis in XLI. [13]

Steroid sulfates like DHEA sulfate and estrone sulfate serve as large biologically inert reservoirs for conversion into androgens and estrogens, respectively, and hence are of significance for androgen- and estrogen-dependent conditions like prostate cancer, breast cancer, endometriosis, and others. A number of clinical trials have been performed with inhibitors of the enzyme that have demonstrated clinical benefit, particularly in oncology and so far up to Phase II. [14] The non-steroidal drug Irosustat has been the most studied to date.

Inhibitors

Inhibitors of STS include irosustat, estrone sulfamate (EMATE), estradiol sulfamate (E2MATE), and danazol. [15] [16] The most potent inhibitors are based around the aryl sulfamate pharmacophore [17] and it is thought that such compounds irreversibly modify the active site formylglycine residue of steroid sulfatase. [14]

Names

Steryl-sulfatase is also known as arylsulfatase , steroid sulfatase, sterol sulfatase, dehydroepiandrosterone sulfate sulfatase, arylsulfatase C, steroid 3-sulfatase, steroid sulfate sulfohydrolase, dehydroepiandrosterone sulfatase, pregnenolone sulfatase, phenolic steroid sulfatase, 3-beta-hydroxysteroid sulfate sulfatase, as well as by its systematic name steryl-sulfate sulfohydrolase. [18] [19] [20]

See also

Related Research Articles

<span class="mw-page-title-main">X-linked ichthyosis</span> Medical condition

X-linked ichthyosis is a skin condition caused by the hereditary deficiency of the steroid sulfatase (STS) enzyme that affects 1 in 2000 to 1 in 6000 males. XLI manifests with dry, scaly skin and is due to deletions or mutations in the STS gene. XLI can also occur in the context of larger deletions causing contiguous gene syndromes. Treatment is largely aimed at alleviating the skin symptoms. The term is from the Ancient Greek 'ichthys' meaning 'fish'.

<span class="mw-page-title-main">Dehydroepiandrosterone sulfate</span> Chemical compound

Dehydroepiandrosterone sulfate, abbreviated as DHEA sulfate or DHEA-S, also known as androstenolone sulfate, is an endogenous androstane steroid that is produced by the adrenal cortex. It is the 3β-sulfate ester and a metabolite of dehydroepiandrosterone (DHEA) and circulates in far greater relative concentrations than DHEA. The steroid is hormonally inert and is instead an important neurosteroid and neurotrophin.

<span class="mw-page-title-main">Arylsulfatase A</span> Mammalian protein found in Homo sapiens

Arylsulfatase A is an enzyme that breaks down sulfatides, namely cerebroside 3-sulfate into cerebroside and sulfate. In humans, arylsulfatase A is encoded by the ARSA gene.

<span class="mw-page-title-main">Sulfatase</span> Class of enzymes which break up sulfate esters by hydrolysis

In biochemistry, sulfatases EC 3.1.6.- are a class of enzymes of the esterase class that catalyze the hydrolysis of sulfate esters into an alcohol and a bisulfate:

<span class="mw-page-title-main">Arylsulfatase B</span> Mammalian protein found in Homo sapiens

Arylsulfatase B is an enzyme associated with mucopolysaccharidosis VI.

<span class="mw-page-title-main">Iduronate-2-sulfatase</span> Class of enzymes

Iduronate 2-sulfatase is a sulfatase enzyme associated with Hunter syndrome. It catalyses hydrolysis of the 2-sulfate groups of the L-iduronate 2-sulfate units of dermatan sulfate, heparan sulfate and heparin.

<span class="mw-page-title-main">Galactosamine-6 sulfatase</span> Protein-coding gene in the species Homo sapiens

N-acetylgalactosamine-6-sulfatase is an enzyme that, in humans, is encoded by the GALNS gene.

<span class="mw-page-title-main">SULT1E1</span> Protein-coding gene in the species Homo sapiens

Estrogen sulfotransferase is an enzyme that in humans is encoded by the SULT1E1 gene.

<span class="mw-page-title-main">Estrone sulfate</span> Chemical compound

Estrone sulfate, also known as E1S, E1SO4 and estrone 3-sulfate, is a natural, endogenous steroid and an estrogen ester and conjugate.

<span class="mw-page-title-main">Arylsulfatase L</span> Protein-coding gene in the species Homo sapiens

Arylsulfatase L is an enzyme that, in humans, is encoded by the ARSL gene.

Sulfate conjugates are a heterogeneous class of polar, anionic organosulfate compounds containing an ester of sulfuric acid. Sulfate conjugates commonly result from the metabolic conjugation of endogenous and exogenous compounds with sulfate (-OSO3).

<span class="mw-page-title-main">Formylglycine-generating enzyme</span>

Formylglycine-generating enzyme (FGE), located at 3p26.1 in humans, is the name for an enzyme present in the endoplasmic reticulum that catalyzes the conversion of cysteine to formylglycine (fGly). There are two main classes of FGE, aerobic and anaerobic. FGE activates sulfatases, which are essential for the degradation of sulfate esters. The catalytic activity of sulfatases is dependent upon a formylglycine residue in the active site.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

<span class="mw-page-title-main">Irosustat</span> Chemical compound

Irosustat is an orally active, irreversible, nonsteroidal inhibitor of steroid sulfatase (STS) and member of the aryl sulfamate ester class of drugs that was under development by Sterix Ltd and Ipsen for the treatment of hormone-sensitive cancers such as breast cancer, prostate cancer, and endometrial cancer but has not yet been marketed. The drug was first designed and synthesized in the group of Professor Barry V L Potter at the Department of Pharmacy & Pharmacology, University of Bath, working together with Professor Michael J. Reed at Imperial College, London and its initial development was undertaken through the university spin-out company Sterix Ltd and overseen by Cancer Research UK (CRUK). Results of the "first-in-class" clinical trial in breast cancer of an STS inhibitor in humans were published in 2006 and dose optimisation studies and further clinical data have been reported.

<span class="mw-page-title-main">Estradiol sulfamate</span> Steroid sulfatase inhibitor under development

Estradiol sulfamate, or estradiol-3-O-sulfamate, is a steroid sulfatase (STS) inhibitor which is under development for the treatment of endometriosis. It is the C3 sulfamate ester of estradiol, and was originally thought to be a prodrug of estradiol.

<span class="mw-page-title-main">Estrone sulfamate</span> Chemical compound

Estrone sulfamate, or estrone-3-O-sulfamate, is a steroid sulfatase (STS) inhibitor which has not yet been marketed. It is the C3 sulfamate ester of the estrogen estrone. Unlike other estrogen esters however, EMATE is not an effective prodrug of estrogens. A closely related compound is estradiol sulfamate (E2MATE), which is extensively metabolized into EMATE and has similar properties to it.

<span class="mw-page-title-main">Steroid sulfate</span>

Steroid sulfates are endogenous sulfate esters of steroids. They are formed by steroid sulfotransferases via sulfation of endogenous steroids like cholesterol and steroid hormones. Although steroid sulfates do not bind to steroid hormone receptors and hence are hormonally inert, they can be desulfated by steroid sulfatase and in this way serve as precursors and circulating reservoirs for their active unsulfated counterparts. In addition, some steroid sulfates have biological activity in their own right, for instance acting as neurosteroids and modulating ligand-gated ion channels such as the GABAA and NMDA receptors among other biological targets.

<span class="mw-page-title-main">EC508</span> Chemical compound

EC508, also known as estradiol 17β-(1- -L-proline), is an estrogen which is under development by Evestra for use in menopausal hormone therapy and as a hormonal contraceptive for the prevention of pregnancy in women. It is an orally active estrogen ester – specifically, a C17β sulfonamide–proline ester of the natural and bioidentical estrogen estradiol – and acts as a prodrug of estradiol in the body. However, unlike oral estradiol and conventional oral estradiol esters such as estradiol valerate, EC508 undergoes little or no first-pass metabolism, has high oral bioavailability, and does not have disproportionate estrogenic effects in the liver. As such, it has a variety of desirable advantages over oral estradiol, similarly to parenteral estradiol, but with the convenience of oral administration. EC508 is a candidate with the potential to replace not only oral estradiol in clinical practice, but also ethinylestradiol in oral contraceptives. Evestra intends to seek Investigational New Drug status for EC508 in the second quarter of 2018.

<span class="mw-page-title-main">Estrone phosphate</span> Chemical compound

Estrone phosphate (E1P), or estrone 3-phosphate, is an estrogen and steroid sulfatase inhibitor which was never marketed. It has similar affinity for steroid sulfatase as estrone sulfate and acts as a competitive inhibitor of the enzyme. In contrast to estrone sulfate however, it is not hydrolyzed by steroid sulfatase and is instead metabolized by phosphatases.

<span class="mw-page-title-main">2-Methoxyestradiol disulfamate</span> Chemical compound

2-Methoxyestradiol disulfamate is a synthetic, oral active anti-cancer medication which was previously under development for potential clinical use. It has improved potency, low metabolism, and good pharmacokinetic properties relative to 2-methoxyestradiol (2-MeO-E2). It is also a potent inhibitor of steroid sulfatase, the enzyme that catalyzes the desulfation of steroids such as estrone sulfate and dehydroepiandrosterone sulfate (DHEA-S).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000101846 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. 1 2 "Entrez Gene: STS steroid sulfatase (microsomal), arylsulfatase C, isozyme S".
  4. 1 2 Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA (October 2015). "The Regulation of Steroid Action by Sulfation and Desulfation". Endocrine Reviews. 36 (5): 526–63. doi:10.1210/er.2015-1036. PMC   4591525 . PMID   26213785.
  5. Rižner TL (2016). "The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases". Frontiers in Pharmacology. 7: 30. doi: 10.3389/fphar.2016.00030 . PMC   4757672 . PMID   26924986.
  6. Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, et al. (December 2002). "Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues". The Journal of Clinical Endocrinology and Metabolism. 87 (12): 5760–8. doi: 10.1210/jc.2002-020670 . PMID   12466383.
  7. Alperin ES, Shapiro LJ (August 1997). "Characterization of point mutations in patients with X-linked ichthyosis. Effects on the structure and function of the steroid sulfatase protein". The Journal of Biological Chemistry. 272 (33): 20756–63. doi: 10.1074/jbc.272.33.20756 . PMID   9252398.
  8. Ghosh D (December 2004). "Mutations in X-linked ichthyosis disrupt the active site structure of estrone/DHEA sulfatase". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1739 (1): 1–4. doi:10.1016/j.bbadis.2004.09.003. PMID   15607112.
  9. Brcic L, Underwood JF, Kendall KM, Caseras X, Kirov G, Davies W (Mar 2020). "Medical and neurobehavioural phenotypes in carriers of X-linked ichthyosis-associated genetic deletions in the UK Biobank". Journal of Medical Genetics. 57 (10): 692–698. doi: 10.1136/jmedgenet-2019-106676 . PMC   7525778 . PMID   32139392.
  10. Wren G, Baker E, Underwood J, Humby T, Thompson A, Kirov G, Escott-Price V, Davies W (November 2022). "Characterising heart rhythm abnormalities associated with Xp22.31 deletion". Journal of Medical Genetics. 60 (7): 636–643. doi: 10.1136/jmg-2022-108862 . PMC   10359567 . PMID   36379544.
  11. Wren GH, Davies W (April 2024). "Cardiac arrhythmia in individuals with steroid sulfatase deficiency (X-linked ichthyosis): candidate anatomical and biochemical pathways". Essays in Biochemistry. doi:10.1042/EBC20230098. PMID   38571328.
  12. Brcic L, Wren GH, Underwood JF, Kirov G, Davies W (May 2022). "Comorbid Medical Issues in X-Linked Ichthyosis". JID Innovations : Skin Science from Molecules to Population Health. 2 (3): 100109. doi:10.1016/j.xjidi.2022.100109. PMC   8938907 . PMID   35330591.
  13. McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O'Toole EA (2023). "RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis". Frontiers in Molecular Biosciences. 10: 1176802. doi:10.3389/fmolb.2023.1176802. PMC   10285781 . PMID   37363400.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. 1 2 Potter BV (August 2018). "SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects". Journal of Molecular Endocrinology. 61 (2): T233–T252. doi: 10.1530/JME-18-0045 . PMID   29618488.
  15. Thomas MP, Potter BV (September 2015). "Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential". The Journal of Steroid Biochemistry and Molecular Biology. 153: 160–9. doi:10.1016/j.jsbmb.2015.03.012. PMID   25843211. S2CID   24116740.
  16. Carlström K, Döberl A, Pousette A, Rannevik G, Wilking N (1984). "Inhibition of steroid sulfatase activity by danazol". Acta Obstetricia et Gynecologica Scandinavica Supplement. 123: 107–11. doi:10.3109/00016348409156994. PMID   6238495. S2CID   45817485.
  17. Thomas MP, Potter BV (October 2015). "Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health". Journal of Medicinal Chemistry. 58 (19): 7634–58. doi:10.1021/acs.jmedchem.5b00386. PMC   5159624 . PMID   25992880.
  18. Roy AB (October 1954). "The steroid sulphatase of Patella vulgata". Biochimica et Biophysica Acta. 15 (2): 300–1. doi:10.1016/0006-3002(54)90078-5. PMC   1274509 . PMID   13208702.
  19. Roy AB (1960). "The Synthesis and Hydrolysis of Sulfate Esters". Advances in Enzymology and Related Areas of Molecular Biology. Advances in Enzymology - and Related Areas of Molecular Biology. Vol. 22. pp. 205–35. doi:10.1002/9780470122679.ch5. ISBN   9780470122679. PMID   13744184.{{cite book}}: |journal= ignored (help)
  20. Halkerston ID, Hillman J, Stitch SR (August 1956). "The enzymic hydrolysis of steroid conjugates. I. Sulphatase and β-glucuronidase activity of molluscan extracts". The Biochemical Journal. 63 (4): 705–10. doi:10.1042/bj0630705. PMC   1216242 . PMID   13355874.

Further reading