7-Dehydrocholesterol reductase

Last updated
DHCR7
Identifiers
Aliases DHCR7 , SLOS, 7-dehydrocholesterol reductase
External IDs OMIM: 602858 MGI: 1298378 HomoloGene: 1042 GeneCards: DHCR7
EC number 1.3.1.21
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001163817
NM_001360

RefSeq (protein)

NP_001157289
NP_001351

Location (UCSC) Chr 11: 71.43 – 71.45 Mb Chr 7: 143.38 – 143.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

7-Dehydrocholesterol reductase, also known as DHCR7, is a protein that in humans is encoded by the DHCR7 gene. [5] [6] [7]

Contents

Function

7-dehydrocholesterol reductase
Identifiers
EC no. 1.3.1.21
CAS no. 9080-21-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The protein encoded by this gene is an enzyme catalyzing the production of cholesterol from 7-Dehydrocholesterol using NADPH.

The DHCR7 gene encodes delta-7-sterol reductase (EC 1.3.1.21), the ultimate enzyme of mammalian sterol biosynthesis that converts 7-dehydrocholesterol (7-DHC) to cholesterol. This enzyme removes the C(7-8) double bond introduced by the sterol delta8-delta7 isomerases. In addition, its role in drug-induced malformations is known: inhibitors of the last step of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. [5]

Pathology

A deficiency is associated with Smith–Lemli–Opitz syndrome. [8]

All house cats and dogs have higher-than-usual activity of this enzyme, causing an inability to synthesize vitamin D due to the lack of 7-dehydrocholesterol. [9]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
VitaminDSynthesis WP1531.png Go to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articlego to articlego to articlego to articleGo to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
VitaminDSynthesis WP1531.png Go to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articlego to articlego to articlego to articleGo to articlego to article
|alt=Vitamin D Synthesis Pathway (view / edit)]]
Vitamin D Synthesis Pathway (view / edit)
  1. The interactive pathway map can be edited at WikiPathways: "VitaminDSynthesis_WP1531".

See also

Related Research Articles

<span class="mw-page-title-main">7-Dehydrocholesterol</span> Chemical compound

7-Dehydrocholesterol (7-DHC) is a zoosterol that functions in the serum as a cholesterol precursor, and is photochemically converted to vitamin D3 in the skin, therefore functioning as provitamin-D3. The presence of this compound in human skin enables humans to manufacture vitamin D3 (cholecalciferol). Upon exposure to ultraviolet UV-B rays in the sun light, 7-DHC is converted into vitamin D3 via previtamin D3 as an intermediate isomer. It is also found in the milk of several mammalian species. Lanolin, a waxy substance that is naturally secreted by wool-bearing mammals, contains 7-DHC which is converted into vitamin D by sunlight and then ingested during grooming as a nutrient. In insects 7-dehydrocholesterol is a precursor for the hormone ecdysone, required for reaching adulthood. It was discovered by Nobel-laureate organic chemist Adolf Windaus.

<span class="mw-page-title-main">Smith–Lemli–Opitz syndrome</span> Recessive genetic condition

Smith–Lemli–Opitz syndrome is an inborn error of cholesterol synthesis. It is an autosomal recessive, multiple malformation syndrome caused by a mutation in the enzyme 7-Dehydrocholesterol reductase encoded by the DHCR7 gene. It causes a broad spectrum of effects, ranging from mild intellectual disability and behavioural problems to lethal malformations.

XX gonadal dysgenesis is a type of female hypogonadism in which the ovaries do not function to induce puberty in an otherwise normal girl whose karyotype is found to be 46,XX. With nonfunctional streak ovaries, she is low in estrogen levels (hypoestrogenic) and has high levels of FSH and LH. Estrogen and progesterone therapy is usually then commenced. Some cases are considered a severe version of premature ovarian failure where the ovaries fail before puberty.

<span class="mw-page-title-main">Laminopathy</span> Medical condition

Laminopathies are a group of rare genetic disorders caused by mutations in genes encoding proteins of the nuclear lamina. They are included in the more generic term nuclear envelopathies that was coined in 2000 for diseases associated with defects of the nuclear envelope. Since the first reports of laminopathies in the late 1990s, increased research efforts have started to uncover the vital role of nuclear envelope proteins in cell and tissue integrity in animals.

<span class="mw-page-title-main">Mevalonate kinase</span> Mammalian protein found in Homo sapiens

Mevalonate kinase is an enzyme that in humans is encoded by the MVK gene. Mevalonate kinases are found in a wide variety of organisms from bacteria to mammals. This enzyme catalyzes the following reaction:

<span class="mw-page-title-main">Dysmorphic feature</span> Abnormal difference in body structure

A dysmorphic feature is an abnormal difference in body structure. It can be an isolated finding in an otherwise normal individual, or it can be related to a congenital disorder, genetic syndrome or birth defect. Dysmorphology is the study of dysmorphic features, their origins and proper nomenclature. One of the key challenges in identifying and describing dysmorphic features is the use and understanding of specific terms between different individuals. Clinical geneticists and pediatricians are usually those most closely involved with the identification and description of dysmorphic features, as most are apparent during childhood.

<span class="mw-page-title-main">MTRR (gene)</span> Protein-coding gene in the species Homo sapiens

Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.

<span class="mw-page-title-main">MID1</span> Protein-coding gene in humans

MID1 is a protein that belongs to the Tripartite motif family (TRIM) and is also known as TRIM18. The MID1 gene is located on the short arm of the X chromosome and loss-of-function mutations in this gene are causative of the X-linked form of a rare developmental disease, Opitz G/BBB Syndrome.

<span class="mw-page-title-main">PEX1</span> Protein-coding gene in the species Homo sapiens

Peroxisome biogenesis factor 1, also known as PEX1, is a protein which in humans is encoded by the PEX1 gene.

<span class="mw-page-title-main">24-Dehydrocholesterol reductase</span> Mammalian protein found in Homo sapiens

24-Dehydrocholesterol reductase is a protein that in humans is encoded by the DHCR24 gene.

<span class="mw-page-title-main">Sterol-C5-desaturase-like</span> Protein-coding gene in the species Homo sapiens

Lathosterol oxidase is a Δ7-sterol 5(6)-desaturase enzyme that in humans is encoded by the SC5D gene.

<span class="mw-page-title-main">Acrocallosal syndrome</span> Medical condition

Acrocallosal syndrome is an extremely rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and intellectual disabilities, and other symptoms. The syndrome was first described by Albert Schinzel in 1979. Mutations in KIF7 are causative for ACLS, and mutations in GLI3 are associated with a similar syndrome.

<span class="mw-page-title-main">Hydrolethalus syndrome</span> Medical condition

Hydrolethalus syndrome (HLS) is a rare genetic disorder that causes improper fetal development, resulting in birth defects and, most commonly, stillbirth.

<span class="mw-page-title-main">Desmosterolosis</span> Medical condition

Desmosterolosis in medicine and biology is a defect in cholesterol biosynthesis. It results in an accumulation of desmosterol and a variety of associated symptoms. Only two cases have been reported as of 2007. The condition is due to inactivating mutations in 24-dehydrocholesterol reductase. Certain anticholesterolemic and antiestrogenic drugs such as triparanol, ethamoxytriphetol, and clomifene have been found to inhibit conversion of desmosterol into cholesterol and to induce desmosterolosis, for instance cataracts.

<span class="mw-page-title-main">Lathosterolosis</span> Recessive genetic condition

Lathosterolosis is an inborn error of cholesterol biosynthesis caused by a deficiency of the enzyme 3-beta-hydroxysteroid-delta-5-desaturase. This leads to a flaw in the conversion of lathosterol to 7-dehydrocholesterol. Characteristics include facial dysmorphism, congenital malformations, failure to thrive, developmental delay, and liver illness. Brunetti-Pierri et al. originally described Lathosterolosis in 2002.

<span class="mw-page-title-main">Young–Madders syndrome</span> Genetic disorder

Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and intellectual disability, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.

<span class="mw-page-title-main">C-5 sterol desaturase</span> Class of enzymes

C-5 sterol desaturase is an enzyme that is highly conserved among eukaryotes and catalyzes the dehydrogenation of a C-5(6) bond in a sterol intermediate compound as a step in the biosynthesis of major sterols. The precise structure of the enzyme's substrate varies by species. For example, the human C-5 sterol desaturase oxidizes lathosterol, while its ortholog ERG3 in the yeast Saccharomyces cerevisiae oxidizes episterol.

A sterol-sensing domain (SSD) is a protein domain which consists of 180 amino acids forming five transmembrane segments capable of binding sterol groups. This type of domain is present in proteins involved in cholesterol metabolism and signalling.

<span class="mw-page-title-main">John M. Opitz</span> German-American geneticist (1935–2023)

John M. Opitz was a German-American medical geneticist and professor at the University of Utah School of Medicine. He is best known for rediscovering the concept of the developmental field in humans and for his detection and delineation of many genetic syndromes, several now known as the "Opitz syndromes" including Smith–Lemli–Opitz syndrome (SLOS), Opitz–Kaveggia syndrome (FGS1), Opitz G/BBB syndrome, Bohring–Opitz syndrome, and other autosomal and X-linked conditions. He is founder of the Wisconsin Clinical Genetics Center, the American Journal of Medical Genetics, and was a cofounder of the American College and American Board of Medical Genetics.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000172893 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000058454 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: DHCR7 7-dehydrocholesterol reductase".
  6. Moebius FF, Fitzky BU, Lee JN, Paik YK, Glossmann H (Feb 1998). "Molecular cloning and expression of the human delta7-sterol reductase". Proceedings of the National Academy of Sciences of the United States of America. 95 (4): 1899–902. Bibcode:1998PNAS...95.1899M. doi: 10.1073/pnas.95.4.1899 . PMC   19210 . PMID   9465114.
  7. Wassif CA, Maslen C, Kachilele-Linjewile S, Lin D, Linck LM, Connor WE, Steiner RD, Porter FD (Jul 1998). "Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome". American Journal of Human Genetics. 63 (1): 55–62. doi:10.1086/301936. PMC   1377256 . PMID   9634533.
  8. Yu H, Patel SB (Nov 2005). "Recent insights into the Smith-Lemli-Opitz syndrome". Clinical Genetics. 68 (5): 383–91. doi:10.1111/j.1399-0004.2005.00515.x. PMC   1350989 . PMID   16207203.
  9. Zafalon, Rafael V. A.; Risolia, Larissa W.; Pedrinelli, Vivian; Vendramini, Thiago H. A.; Rodrigues, Roberta B. A.; Amaral, Andressa R.; Kogika, Marcia M.; Brunetto, Marcio A. (January 2020). "Vitamin D metabolism in dogs and cats and its relation to diseases not associated with bone metabolism". Journal of Animal Physiology and Animal Nutrition. 104 (1): 322–342. doi: 10.1111/jpn.13259 . PMID   31803981.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.