Farnesyl-diphosphate farnesyltransferase

Last updated
Squalene synthase
3q30.png
Human Squalene synthase in complex with inhibitor. PDB 3q30 [1]
Identifiers
EC no. 2.5.1.21
CAS no. 9077-14-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
farnesyl-diphosphate farnesyltransferase 1
Identifiers
SymbolFDFT1
NCBI gene 2222
HGNC 3629
OMIM 184420
RefSeq NM_004462
UniProt P37268
Other data
EC number 2.5.1.21
Locus Chr. 8 p23.1-p22
Search for
Structures Swiss-model
Domains InterPro

Squalene synthase (SQS) or farnesyl-diphosphate:farnesyl-diphosphate farnesyl transferase is an enzyme localized to the membrane of the endoplasmic reticulum. SQS participates in the isoprenoid biosynthetic pathway, catalyzing a two-step reaction in which two identical molecules of farnesyl pyrophosphate (FPP) are converted into squalene, with the consumption of NADPH. [2] Catalysis by SQS is the first committed step in sterol synthesis, since the squalene produced is converted exclusively into various sterols, such as cholesterol, via a complex, multi-step pathway. SQS belongs to squalene/phytoene synthase family of proteins.

Contents

Diversity

Squalene synthase has been characterized in animals, plants, and yeast. [3] In terms of structure and mechanics, squalene synthase closely resembles phytoene synthase (PHS), another prenyltransferase. PHS serves a similar role to SQS in plants and bacteria, catalyzing the synthesis of phytoene, a precursor of carotenoid compounds. [4]

Structure

Squalene synthase (SQS) is localized exclusively to the membrane of the endoplasmic reticulum (ER). [5] SQS is anchored to the membrane by a short C-terminal membrane-spanning domain. [6] The N-terminal catalytic domain of the enzyme protrudes into the cytosol, where the soluble substrates are bound. [2] Mammalian forms of SQS are approximately 47kDa and consist of ~416 amino acids. The crystal structure of human SQS was determined in 2000, and revealed that the protein was composed entirely of α-helices. The enzyme is folded into a single domain, characterized by a large central channel. The active sites of both of the two half-reactions catalyzed by SQS are located within this channel. One end of the channel is open to the cytosol, whereas the other end forms a hydrophobic pocket. [5] SQS contains two conserved aspartate-rich sequences, which are believed to participate directly in the catalytic mechanism. [7] These aspartate-rich motifs are one of several conserved structural features in class I isoprenoid biosynthetic enzymes, although these enzymes do not share sequence homology. [5]

Squalene Synthase (Human). Key residues in the central channel are shown as spheres. Squalene Synthase (Human). Key residues in the central channel are shown as spheres..png
Squalene Synthase (Human). Key residues in the central channel are shown as spheres.

Mechanism

SQS Reaction.png

Squalene synthase (SQS) catalyzes the reductive dimerization of farnesyl pyrophosphate (FPP), in which two identical molecules of FPP are converted into one molecule of squalene. The reaction occurs in two steps, proceeding through the intermediate presqualene pyrophosphate (PSPP). FPP is a soluble allylic compound containing 15 carbon atoms (C15), whereas squalene is an insoluble, C30 isoprenoid. [2] [4] This reaction is a head-to-head terpene synthesis, because the two FPP molecules are both joined at the C4 position and form a 1-1' linkage. This stands in contrast to the 1'-4 linkages that are much more common in isoprene biosynthesis than 4-4' linkages. [8] [9] The reaction mechanism of SQS requires a divalent cation, often Mg2+, to facilitate binding of the pyrophosphate groups on FPP. [10]

FPP condensation

In the first half-reaction, two identical molecules of farnesyl pyrophosphate (FPP) are bound to squalene synthase (SQS) in a sequential manner. The FPP molecules bind to distinct regions of the enzyme, and with different binding affinities. [11] Starting at the top of the catalytic cycle below, the reaction begins with the ionization of FPP to generate an allylic carbocation. A tyrosine residue (Tyr-171) plays a critical role in this step by serving as a proton donor to facilitate abstraction of pyrophosphate. Moreover, the resulting phenolate anion can stabilize the resulting carbocation through cation-π interactions, which would be particularly strong due to the highly electron-rich nature of the phenolate anion. The allylic cation generated is then attacked by the olefin of a second molecule of FPP, affording a tertiary carbocation. The phenolate anion generated previously then serves as a base to abstract a proton from this adduct to form a cyclopropane product, presqualene pyrophosphate (PSPP). The PSPP created remains associated with SQS for the second reaction. [5] [10] The importance of a tyrosine residue in this process was demonstrated by mutagenesis studies with rat SQS (rSQS), [7] and by the fact that Tyr-171 is conserved in all known SQSs (and PHSs). [2] In rSQS, Tyr-171 was converted to aromatic residues Phe and Trp, as well as hydroxyl-containing residue Ser. None of these mutants were able to convert FPP to PSPP or squalene, demonstrating that aromatic rings or alcohols alone are insufficient for converting FPP to PSPP.

SQS Mechanism 1.png

PSPP rearrangement and reduction

In the second half-reaction of SQS, presqualene pyrophosphate (PSPP) moves to a second reaction site within SQS. Keeping PSPP in the central channel of SQS is thought to protect the reactive intermediate from reacting with water. [5] From PSPP, squalene is formed by a series of carbocation rearrangements. [12] [13] The process begins with ionization of pyrophosphate, giving a cyclopropylcarbinyl cation. The cation rearranges by a 1,2-migration of a cyclopropane C–C bond to the carbocation, forming the bond shown in blue to give a cyclobutyl carbocation. Subsequently, a second 1,2-migration occurs to form another cyclopropylcarbinyl cation, with the cation resting on a tertiary carbon. This resulting carbocation is then ring-opened by a hydride delivered by NADPH, giving squalene, which is then released by SQS into the membrane of the endoplasmic reticulum. [2]

SQS Mechanism 2.png

While cyclopropylcarbinyl-cyclopropylcarbinyl rearrangements can proceed through discrete cyclobutyl cation intermediates, the supposed cyclobutyl cation could not be trapped in model studies. Thus, the cyclobutyl cation may actually be a transition state between the two cyclopropylcarbinyl cations, rather than a discrete intermediate. The stereochemistry of the intermediates and the olefin geometry in the final product is dictated by the suprafacial nature of the 1,2-shifts and stereoelectronic requirements. While other mechanisms have been proposed, the mechanism shown above is supported by isolation of rillingol, which is the alcohol formed from trapping the second cyclopropylcarbinyl cation with water.

Regulation

Branching of the mevalonate pathway at FPP to sterol and non-sterol products. Mevalonate Pathway Branching at FPP.png
Branching of the mevalonate pathway at FPP to sterol and non-sterol products.

FPP is an important metabolic intermediate in the mevalonate pathway that represents a major branch point in terpenoid pathways. [2] [14] FPP is used to form several important classes of compounds in addition to sterols (via squalene), including ubiquinone [15] and dolichols. [16] SQS catalyzes the first committed step in sterol biosynthesis from FPP, and is therefore important for controlling the flux towards sterol vs. non-sterol products. The activity of SQS is intimately related to the activity of HMG-CoA reductase, which catalyzes the rate-limiting step of the mevalonate pathway. High levels of LDL-derived cholesterol inhibit HMG-CoA reductase activity significantly, since mevalonate is no longer needed for sterol production. However, residual HMG-CoA reductase activity is observed even with very high LDL levels, such that FPP can be made for forming non-sterol products essential for cell growth. [17] To prevent this residual FPP from being used for sterol synthesis when sterols are abundant, SQS activity declines significantly when LDL levels are high. [18] This suppression of SQS activity is better thought of as a flux control mechanism, rather than a way to regulate cholesterol levels. This is since HMG-CoA reductase is the more significant control factor for regulating cholesterol synthesis (its activity is 98% inhibited when LDL levels are high). [17]

Regulation by sterols

SQS regulation occurs primarily at the level of SQS gene transcription. [2] The sterol regulatory element binding protein (SREBP) class of transcription factors is central to regulating genes involved in cholesterol homeostasis, and is important for controlling levels of SQS transcription. When sterol levels are low, an inactive form of SREBP is cleaved to form the active transcription factor, which moves to the nucleus to induce transcription of the SQS gene. Of the three known SREBP transcription factors, only SREBP-1a and SREBP-2 activate SQS gene transcription in transgenic mouse livers. [19] [20] In cultured HepG2 cells, SREBP-1a appears more important than SREBP-2 in controlling activation of the SQS promoter. [21] However, SQS promoters have been shown to respond differently to SREBP-1a and SREBP-2 in different experimental systems.

Aside from SREBPs, accessory transcription factors are needed for maximal activation of the SQS promoter. Promoter studies using luciferase reporter gene assays revealed that the Sp1, and NF-Y and/or CREB transcription factors are also important for SQS promoter activation. NF-Y and/or CREB are required for SREBP-1a to fully activate the SQS promoter, although Sp1 is also needed for SREBP-2 to do so.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
StatinPathway WP430.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
StatinPathway WP430.png go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Statin Pathway edit]]
Statin Pathway edit
  1. The interactive pathway map can be edited at WikiPathways: "Statin_Pathway_WP430".

Biological Function

Squalene synthase (SQS) is an enzyme participating in the isoprenoid biosynthetic pathway. SQS synthase catalyzes the branching point between sterol and nonsterol biosynthesis, and commits farnesyl pyrophosphate (FPP) exclusively to production of sterols. [2] An important sterol produced by this pathway is cholesterol, which is used in cell membranes and for the synthesis of hormones. [22] SQS competes with several other enzymes for use of FPP, since it is a precursor for a variety of terpenoids. Decreases in SQS activity limit flux of FPP to the sterol pathway, and increase the production of nonsterol products. Important nonsterol products include ubiquinone, dolichols, heme A, and farnesylated proteins [23]

Development of squalene synthase knockout mice has demonstrated that loss of squalene synthase is lethal, and that the enzyme is essential for development of the central nervous system. [24]

Disease Relevance

Squalene synthase is a target for the regulation of cholesterol levels. Increased expression of SQS has been shown to elevate cholesterol levels in mice. [24] Therefore, inhibitors of SQS are of great interest in the treatment of hypercholesterolemia and prevention of coronary heart disease (CHD). [25] It has also been suggested that variants in this enzyme may be part of a genetic association with hypercholesterolemia. [26]

Squalene synthase inhibitors

Squalene synthase inhibitors have been shown to decrease cholesterol synthesis, as well as to decrease plasma triglyceride levels. [22] [27] SQS inhibitors may provide an alternative to HMG-CoA reductase inhibitors (statins), which have problematic side effects for some patients. [28] Squalene synthase inhibitors that have been investigated for use in the prevention of cardiovascular disease include lapaquistat (TAK-475), zaragozic acid, and RPR 107393. [29] [30] Despite reaching phase II clinical trials, lapaquistat was discontinued by 2008. [31] [32]

Squalene synthase homolog inhibition in Staphylococcus aureus is currently being investigated as a virulence factor-based antibacterial therapy. [33]

Related Research Articles

<span class="mw-page-title-main">Cholesterol</span> Sterol biosynthesized by all animal cells

Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.

<span class="mw-page-title-main">Mevalonate pathway</span> Series of interconnected biochemical reactions

The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are used to make isoprenoids, a diverse class of over 30,000 biomolecules such as cholesterol, vitamin K, coenzyme Q10, and all steroid hormones.

<span class="mw-page-title-main">Lovastatin</span> Chemical compound

Lovastatin, sold under the brand name Mevacor among others, is a statin medication, to treat high blood cholesterol and reduce the risk of cardiovascular disease. Its use is recommended together with lifestyle changes. It is taken by mouth.

<span class="mw-page-title-main">HMG-CoA reductase</span> Mammalian protein found in Homo sapiens

HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol. Normally in mammalian cells this enzyme is competitively suppressed so that its effect is controlled. This enzyme is the target of the widely available cholesterol-lowering drugs known collectively as the statins, which help treat dyslipidemia.

<span class="mw-page-title-main">Squalene</span> Chemical compound

Squalene is an organic compound. It is a triterpene with the formula C30H50. It is a colourless oil, although impure samples appear yellow. It was originally obtained from shark liver oil (hence its name, as Squalus is a genus of sharks). An estimated 12% of bodily squalene in humans is found in sebum. Squalene has a role in topical skin lubrication and protection.

<span class="mw-page-title-main">Prenylation</span> Addition of hydrophobic moieties to proteins or other biomolecules

Prenylation is the addition of hydrophobic molecules to a protein or a biomolecule. It is usually assumed that prenyl groups (3-methylbut-2-en-1-yl) facilitate attachment to cell membranes, similar to lipid anchors like the GPI anchor, though direct evidence of this has not been observed. Prenyl groups have been shown to be important for protein–protein binding through specialized prenyl-binding domains.

<span class="mw-page-title-main">Smith–Lemli–Opitz syndrome</span> Medical condition

Smith–Lemli–Opitz syndrome is an inborn error of cholesterol synthesis. It is an autosomal recessive, multiple malformation syndrome caused by a mutation in the enzyme 7-Dehydrocholesterol reductase encoded by the DHCR7 gene. It causes a broad spectrum of effects, ranging from mild intellectual disability and behavioural problems to lethal malformations.

<span class="mw-page-title-main">Hopanoids</span> Class of chemical compounds

Hopanoids are a diverse subclass of triterpenoids with the same hydrocarbon skeleton as the compound hopane. This group of pentacyclic molecules therefore refers to simple hopenes, hopanols and hopanes, but also to extensively functionalized derivatives such as bacteriohopanepolyols (BHPs) and hopanoids covalently attached to lipid A.

Farnesyl pyrophosphate (FPP), also known as farnesyl diphosphate (FDP), is an intermediate in the biosynthesis of terpenes and terpenoids such as sterols and carotenoids. It is also used in the synthesis of CoQ, as well as dehydrodolichol diphosphate.

<i>beta</i>-Sitosterol Chemical compound

β-sitosterol (beta-sitosterol) is one of several phytosterols with chemical structures similar to that of cholesterol. It is a white, waxy powder with a characteristic odor, and is one of the components of the food additive E499. Phytosterols are hydrophobic and soluble in alcohols.

<span class="mw-page-title-main">Sterol regulatory element-binding protein</span> Protein family

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that bind to the sterol regulatory element DNA sequence TCACNCCAC. Mammalian SREBPs are encoded by the genes SREBF1 and SREBF2. SREBPs belong to the basic-helix-loop-helix leucine zipper class of transcription factors. Unactivated SREBPs are attached to the nuclear envelope and endoplasmic reticulum membranes. In cells with low levels of sterols, SREBPs are cleaved to a water-soluble N-terminal domain that is translocated to the nucleus. These activated SREBPs then bind to specific sterol regulatory element DNA sequences, thus upregulating the synthesis of enzymes involved in sterol biosynthesis. Sterols in turn inhibit the cleavage of SREBPs and therefore synthesis of additional sterols is reduced through a negative feed back loop.

<span class="mw-page-title-main">Lanosterol synthase</span> Mammalian protein found in Homo sapiens

Lanosterol synthase (EC 5.4.99.7) is an oxidosqualene cyclase (OSC) enzyme that converts (S)-2,3-oxidosqualene to a protosterol cation and finally to lanosterol. Lanosterol is a key four-ringed intermediate in cholesterol biosynthesis. In humans, lanosterol synthase is encoded by the LSS gene.

<span class="mw-page-title-main">Diphosphomevalonate decarboxylase</span> InterPro Family

Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Hydroxymethylglutaryl-CoA synthase</span> Class of enzymes

In molecular biology, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate-dependent isoprenoid biosynthesis pathway. HMG-CoA is an intermediate in both cholesterol synthesis and ketogenesis. This reaction is overactivated in patients with diabetes mellitus type 1 if left untreated, due to prolonged insulin deficiency and the exhaustion of substrates for gluconeogenesis and the TCA cycle, notably oxaloacetate. This results in shunting of excess acetyl-CoA into the ketone synthesis pathway via HMG-CoA, leading to the development of diabetic ketoacidosis.

In enzymology, a geranyltranstransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Zaragozic acid</span> Chemical compound

Zaragozic acids are a family of natural products produced by fungi. The first characterized zaragozic acids, A, B, and C were isolated from an unidentified sterile fungal culture, Sporormiella intermedia, and L. elatius, respectively. just outside the European city Zaragoza, Spain on the Jalón river. This family of natural products possesses a unique 4,8-dioxabicyclo[3.2.1]octane core, and vary in their 1-alkyl and their 6-acyl side chains.

<span class="mw-page-title-main">Juvabione</span> Chemical compound

Juvabione, historically known as the paper factor, is the methyl ester of todomatuic acid. Both are sesquiterpenes (C15) found in the wood of true firs of the genus Abies. They occur naturally as part of a mixture of sesquiterpenes based upon the bisabolane scaffold. Sesquiterpenes of this family are known as insect juvenile hormone analogues (IJHA) because of their ability to mimic juvenile activity in order to stifle insect reproduction and growth. These compounds play important roles in conifers as the second line of defense against insect induced trauma and fungal pathogens.

The squalene/phytoene synthase family represents proteins that catalyze the head-to-head condensation of C15 and C20 prenyl units (i.e. farnesyl diphosphate and genranylgeranyl diphosphate). This enzymatic step constitutes part of steroid and carotenoid biosynthesis pathway. Squalene synthase EC (SQS) and Phytoene synthase EC (PSY) are two well-known examples of this protein family and share a number of functional similarities. These similarities are also reflected in their primary structure. In particular three well conserved regions are shared by SQS and PSY; they could be involved in substrate binding and/or the catalytic mechanism. SQS catalyzes the conversion of two molecules of farnesyl diphosphate (FPP) into squalene. It is the first committed step in the cholesterol biosynthetic pathway. The reaction carried out by SQS is catalyzed in two separate steps: the first is a head-to-head condensation of the two molecules of FPP to form presqualene diphosphate; this intermediate is then rearranged in a NADP-dependent reduction, to form squalene:

<span class="mw-page-title-main">Oxidosqualene cyclase</span>

Oxidosqualene cyclases (OSC) are enzymes involved in cyclization reactions of 2,3-oxidosqualene to form sterols or triterpenes.

A steroidogenesis inhibitor, also known as a steroid biosynthesis inhibitor, is a type of drug which inhibits one or more of the enzymes that are involved in the process of steroidogenesis, the biosynthesis of endogenous steroids and steroid hormones. They may inhibit the production of cholesterol and other sterols, sex steroids such as androgens, estrogens, and progestogens, corticosteroids such as glucocorticoids and mineralocorticoids, and neurosteroids. They are used in the treatment of a variety of medical conditions that depend on endogenous steroids.

References

  1. Ichikawa M, Yokomizo A, Itoh M, Sugita K, Usui H, Shimizu H, Suzuki M, Terayama K, Kanda A (March 2011). "Discovery of a new 2-aminobenzhydrol template for highly potent squalene synthase inhibitors". Bioorg. Med. Chem. 19 (6): 1930–49. doi:10.1016/j.bmc.2011.01.065. PMID   21353782.
  2. 1 2 3 4 5 6 7 8 Tansey TR, Shechter I (December 2000). "Structure and regulation of mammalian squalene synthase". Biochim. Biophys. Acta. 1529 (1–3): 49–62. doi:10.1016/S1388-1981(00)00137-2. PMID   11111077.
  3. Nakashima T, Inoue T, Oka A, Nishino T, Osumi T, Hata S (March 1995). "Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase". Proc. Natl. Acad. Sci. U.S.A. 92 (6): 2328–32. Bibcode:1995PNAS...92.2328N. doi: 10.1073/pnas.92.6.2328 . PMC   42476 . PMID   7892265.
  4. 1 2 Tansey TR, Shechter I (2001). "Squalene synthase: structure and regulation". Prog. Nucleic Acid Res. Mol. Biol. Progress in Nucleic Acid Research and Molecular Biology. 65: 157–95. doi:10.1016/S0079-6603(00)65005-5. ISBN   9780125400657. PMID   11008488.
  5. 1 2 3 4 5 Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, Hamanaka ES, Thompson JF, Harwood HJ (September 2000). "Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis". J. Biol. Chem. 275 (39): 30610–7. doi: 10.1074/jbc.M004132200 . PMID   10896663.
  6. Jennings SM, Tsay YH, Fisch TM, Robinson GW (July 1991). "Molecular cloning and characterization of the yeast gene for squalene synthetase". Proc. Natl. Acad. Sci. U.S.A. 88 (14): 6038–42. Bibcode:1991PNAS...88.6038J. doi: 10.1073/pnas.88.14.6038 . PMC   52017 . PMID   2068081.
  7. 1 2 Gu P, Ishii Y, Spencer TA, Shechter I (May 1998). "Function-structure studies and identification of three enzyme domains involved in the catalytic activity in rat hepatic squalene synthase". J. Biol. Chem. 273 (20): 12515–25. doi: 10.1074/jbc.273.20.12515 . PMID   9575210.
  8. Poulter CD (1990). "Biosynthesis of non-head-to-tail terpenes. Formation of 1'-1 and 1'-3 linkages". Accounts of Chemical Research. 23 (3): 70–77. doi:10.1021/ar00171a003.
  9. Lin FY, Liu CI, Liu YL, Zhang Y, Wang K, Jeng WY, Ko TP, Cao R, Wang AH, Oldfield E (December 2010). "Mechanism of action and inhibition of dehydrosqualene synthase". Proc. Natl. Acad. Sci. U.S.A. 107 (50): 21337–42. Bibcode:2010PNAS..10721337L. doi: 10.1073/pnas.1010907107 . PMC   3003041 . PMID   21098670.
  10. 1 2 Beytia E, Qureshi AA, Porter JW (March 1973). "Squalene synthetase. 3. Mechanism of the reaction". J. Biol. Chem. 248 (5): 1856–67. doi: 10.1016/S0021-9258(19)44269-5 . PMID   4348553.
  11. Mookhtiar KA, Kalinowski SS, Zhang D, Poulter CD (April 1994). "Yeast squalene synthase. A mechanism for addition of substrates and activation by NADPH". J. Biol. Chem. 269 (15): 11201–7. doi: 10.1016/S0021-9258(19)78111-3 . PMID   8157649.
  12. Blagg, Brian S. J.; Jarstfer, Michael B.; Rogers, Daniel H.; Poulter, C. Dale (2002-07-04). "Recombinant Squalene Synthase. A Mechanism for the Rearrangement of Presqualene Diphosphate to Squalene". Journal of the American Chemical Society. 124 (30): 8846–8853. doi:10.1021/ja020411a. PMID   12137537.
  13. Jarstfer, Michael B.; Blagg, Brian S. J.; Rogers, Daniel H.; Poulter, C. Dale (1996-12-25). "Biosynthesis of Squalene. Evidence for a Tertiary Cyclopropylcarbinyl Cationic Intermediate in the Rearrangement of Presqualene Diphosphate to Squalene". Journal of the American Chemical Society. 118 (51): 13089–13090. doi:10.1021/ja963308s.
  14. Brown, Michael S.; Goldstein, Joseph L. (1980). "Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth". J. Lipid Res. 21 (5): 505–517. doi: 10.1016/S0022-2275(20)42221-7 . PMID   6995544.
  15. Olson, Robert E. (1967-01-01). Robert S. Harris; Ira G. Wool; John A. Loraine; G. F. Marrian; Kenneth V. Thimann (eds.). "Biosynthesis of Ubiquinones in Animals*". Vitamins & Hormones. 24: 551–574. doi:10.1016/s0083-6729(08)60221-6. ISBN   9780127098241. PMID   5340877.
  16. Gough, Doreen P.; Hemming, F. W. (1970-06-01). "The characterization and stereochemistry of biosynthesis of dolichols in rat liver". Biochemical Journal. 118 (1): 163–166. doi:10.1042/bj1180163. ISSN   0264-6021. PMC   1179092 . PMID   4319540.
  17. 1 2 Faust, Jerry R.; Goldstein, Joseph L.; Brown, Michael S. (1979-01-01). "Synthesis of ubiquinone and cholesterol in human fibroblasts: Regulation of a branched pathway". Archives of Biochemistry and Biophysics. 192 (1): 86–99. doi:10.1016/0003-9861(79)90074-2. PMID   219777.
  18. Faust, Jerry R.; Goldstein, Joseph L.; Brown, Michael S. (1979-10-01). "Squalene synthetase activity in human fibroblasts: Regulation via the low density lipoprotein receptor". Proceedings of the National Academy of Sciences of the United States of America. 76 (10): 5018–5022. Bibcode:1979PNAS...76.5018F. doi: 10.1073/pnas.76.10.5018 . ISSN   0027-8424. PMC   413070 . PMID   228272.
  19. Guan, G.; Jiang, G.; Koch, R. L.; Shechter, I. (1995-09-15). "Molecular cloning and functional analysis of the promoter of the human squalene synthase gene". The Journal of Biological Chemistry. 270 (37): 21958–21965. doi: 10.1074/jbc.270.37.21958 . ISSN   0021-9258. PMID   7665618.
  20. Guan, Guimin; Dai, Pei-Hua; Osborne, Timothy F.; Kim, Jae B.; Shechter, Ishaiahu (1997-04-11). "Multiple Sequence Elements are Involved in the Transcriptional Regulation of the Human Squalene Synthase Gene". Journal of Biological Chemistry. 272 (15): 10295–10302. doi: 10.1074/jbc.272.15.10295 . ISSN   0021-9258. PMID   9092581.
  21. Guan, G.; Dai, P.; Shechter, I. (1998-05-15). "Differential transcriptional regulation of the human squalene synthase gene by sterol regulatory element-binding proteins (SREBP) 1a and 2 and involvement of 5' DNA sequence elements in the regulation". The Journal of Biological Chemistry. 273 (20): 12526–12535. doi: 10.1074/jbc.273.20.12526 . ISSN   0021-9258. PMID   9575211.
  22. 1 2 Kourounakis AP, Katselou MG, Matralis AN, Ladopoulou EM, Bavavea E (2011). "Squalene synthase inhibitors: An update on the search for new antihyperlipidemic and antiatherosclerotic agents". Curr. Med. Chem. 18 (29): 4418–39. doi:10.2174/092986711797287557. PMID   21864285.
  23. Paradise EM, Kirby J, Chan R, Keasling JD (June 2008). "Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase". Biotechnol. Bioeng. 100 (2): 371–8. doi:10.1002/bit.21766. PMID   18175359. S2CID   23878922.
  24. 1 2 Okazaki H, Tazoe F, Okazaki S, Isoo N, Tsukamoto K, Sekiya M, Yahagi N, Iizuka Y, Ohashi K, Kitamine T, Tozawa R, Inaba T, Yagyu H, Okazaki M, Shimano H, Shibata N, Arai H, Nagai RZ, Kadowaki T, Osuga J, Ishibashi S (September 2006). "Increased cholesterol biosynthesis and hypercholesterolemia in mice overexpressing squalene synthase in the liver". J. Lipid Res. 47 (9): 1950–8. doi: 10.1194/jlr.M600224-JLR200 . PMID   16741291.
  25. Davidson MH (January 2007). "Squalene synthase inhibition: a novel target for the management of dyslipidemia". Curr Atheroscler Rep. 9 (1): 78–80. doi:10.1007/BF02693932. PMID   17169251. S2CID   28176904.
  26. Do R, Kiss RS, Gaudet D, Engert JC (January 2009). "Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway". Clin. Genet. 75 (1): 19–29. doi:10.1111/j.1399-0004.2008.01099.x. PMID   19054015. S2CID   205406994.
  27. Hiyoshi H, Yanagimachi M, Ito M, Saeki T, Yoshida I, Okada T, Ikuta H, Shinmyo D, Tanaka K, Kurusu N, Tanaka H (November 2001). "Squalene synthase inhibitors reduce plasma triglyceride through a low-density lipoprotein receptor-independent mechanism". Eur. J. Pharmacol. 431 (3): 345–52. doi:10.1016/S0014-2999(01)01450-9. PMID   11730728.
  28. Seiki S, Frishman WH (2009). "Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia". Cardiol Rev. 17 (2): 70–6. doi:10.1097/CRD.0b013e3181885905. PMID   19367148. S2CID   33130333.
  29. Charlton-Menys V, Durrington PN (2007). "Squalene synthase inhibitors : clinical pharmacology and cholesterol-lowering potential". Drugs. 67 (1): 11–6. doi:10.2165/00003495-200767010-00002. PMID   17209661. S2CID   45715717.
  30. Amin D, Rutledge RZ, Needle SN, Galczenski HF, Neuenschwander K, Scotese AC, Maguire MP, Bush RC, Hele DJ, Bilder GE, Perrone MH (May 1997). "RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: comparison with inhibitors of HMG-CoA reductase". J. Pharmacol. Exp. Ther. 281 (2): 746–52. PMID   9152381.
  31. Gibbs, Edwina (29 October 2007). "UPDATE 2-US FDA tells Takeda to stop some TAK-475 trials". Reuters. Retrieved 5 March 2013.
  32. "Discontinuation of Development of TAK-475, A Compound for Treatment of Hypercholesterolemia". Takeda Pharmaceutical Company Limited. 28 March 2008. Retrieved 5 March 2013.
  33. Liu CI, Liu GY, Song Y, Yin F, Hensler ME, Jeng WY, Nizet V, Wang AH, Oldfield E (March 2008). "A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence" (PDF). Science. 319 (5868): 1391–4. Bibcode:2008Sci...319.1391L. doi:10.1126/science.1153018. PMC   2747771 . PMID   18276850.