Deoxyribonuclease IV

Last updated
Deoxyribonuclease IV (phage-T4-induced)
Identifiers
EC no. 3.1.21.2
CAS no. 63363-78-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Deoxyribonuclease IV (phage-T4-induced) (EC 3.1.21.2, endodeoxyribonuclease IV (phage T4-induced), E. coli endonuclease IV, endodeoxyribonuclease, redoxyendonuclease, deoxriboendonuclease, Escherichia coli endonuclease II, endonuclease II, DNA-adenine-transferase) is catalyzes the degradation nucleotides [1] in DsDNA by attacking the 5'-terminal end. [2] [3] [4]

Contents

Deoxyribonuclease IV is a type of deoxyribonuclease that has both an exonucleolytic and an endonucleolytic activity. [1] It functions at abasic or apurinic-apyrimidinic sites when the cell is undergoing nucleotide excision repair pathway. [5] In addition, the endonuclease IV consists of several activities such as AP endonuclease, 3'-diesterase, 3'->5' exonuclease, and 3'phosphatase. [6]

The endonuclease IV is encoded by denB of bacteriophage T4 and its binding sequence is 5′-dT||dCdAdCdTdTdC-3′. It has been discovered that serine 176 residue plays a crucial role in increasing the hydrolysis rate of the endonuclease of a consensus sequence containing cytidine. The endonuclease IV falls under a structurally resembling members with apyrimidininc endonuclease I (APE1). [7]

Discovery

Deoxyribonuclease IV was first isolated from rabbit tissues in 1968. Specifically, it was found in rabbit bone marrow by Lindahl. [8] And its molecular weight was determined to be 42,000 dalton. It was discovered that this enzyme resembles several microbial endonuclease activities of DNA polymerase I found in Escherichia coli, which appear to be necessary for DNA repair and recombination. [9] It also resembles gamma exonuclease, which performs an important function in recombination of bacteriophage. [10]

Structure

DNase IV is composed of 185 amino acid residues with magnesium ions acting as a cofactor. Divalent metal ions such as Mg²⁺ act as cofactor during the cleavage of 5'-mononucleotides. [11] DNase IV prefers to attack native DNA acting as an endonuclease with metal ions either Mg++ or Mn++. [12] Its TIM beta barrel core surrounded by helices with three metal ions —either three Zn2+ or two Zn2+ and one Mn2+ which plays crucial role in AP excision repair. [13]

Function

DNase IV attacks dsDNA at 5' ends by liberating 5' mononucleotides but it does not attack any monomers in polydeoxyribonucleotides in a random fashion. It cleaves polydeoxyribonucleotides in an exonucleolytic fashion from 5' end, meaning it removes a nucleotide chain that is adjacent to the 5' terminal end rather than cleaving a nucleotide located in the middle of the chain. DNase IV works by attacking multiple polynucleotide chains at the same time. [10] Since it does not cleave dsDNA in a processive way, the rate of hydrolysis of this enzyme is faster than native DNA in terms of kinetics. [14] DNase IV does not recognize specific sequences on DNA for non-staggered cleavage. However, it requires two base pairs at one cleavage site, and the other cleavage site of double-stranded DNA should have more than 10 base pairs. [12]

Enzyme Activities in cell environment and DNA

70% of the total DNase IV activity was found in the cytoplasm while 30% was found in cell nuclei. [1] In human body, DNase IV was required for cleavage of a reaction intermediate generated by template strand displacement during gap-filling. [15]

During the endonuclease activity, conformational change in DNA occurs in a way that exposes the abasic site by bending the DNA by 90 degrees, which involves flipping out the sugar moiety into a small pocket that would not form watson-crick base pair. [13]

DNase IV acts on double stranded DNA in repair by breaking phosphodiester bonds, but the number of cleavages by this enzyme is smaller than the extent of polymerization of DNA. [14]

Difference between DNase III vs. DNase IV

In crude cell extracts from lymphoid organs, DNase III and DNase IV show major activities because DNase I activity is inhibited. The activities of DNase III and DNase IV depend on two Mg++ as cofactors and these enzymes are localized in cell nuclei. Even though they require same divalent metal to function, there are major difference in liberating polynucleotides. DNase III cleaves a single strand of DNA from 3' terminal end but DNase IV cleaves a double strand of DNA from 5' terminal end. [10] Because DNase III degrades single stranded DNA, the rate of hydrolysis of DNase III is more rapid than that of DNase IV. [1]

See also

Related Research Articles

<span class="mw-page-title-main">DNA ligase</span> Class of enzymes

DNA ligase is a type of enzyme that facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms may specifically repair double-strand breaks. Single-strand breaks are repaired by DNA ligase using the complementary strand of the double helix as a template, with DNA ligase creating the final phosphodiester bond to fully repair the DNA.

A restriction enzyme, restriction endonuclease, REase, ENase orrestrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone of the DNA double helix.

<span class="mw-page-title-main">DNA polymerase</span> Form of DNA replication

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

Deoxyribonuclease refers to a group of glycoprotein endonucleases which are enzymes that catalyze the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA. The role of the DNase enzyme in cells includes breaking down extracellular DNA (ecDNA) excreted by apoptosis, necrosis, and neutrophil extracellular traps (NET) of cells to help reduce inflammatory responses that otherwise are elicited. A wide variety of deoxyribonucleases are known and fall into one of two families, which differ in their substrate specificities, chemical mechanisms, and biological functions. Laboratory applications of DNase include purifying proteins when extracted from prokaryotic organisms. Additionally, DNase has been applied as a treatment for diseases that are caused by ecDNA in the blood plasma. Assays of DNase are emerging in the research field as well.

<span class="mw-page-title-main">Nuclease</span> Class of enzymes which cleave nucleic acids

In biochemistry, a nuclease is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning.

<span class="mw-page-title-main">Okazaki fragments</span> Parts of lagging strand in DNA replication

Okazaki fragments are short sequences of DNA nucleotides which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA replication. They were discovered in the 1960s by the Japanese molecular biologists Reiji and Tsuneko Okazaki, along with the help of some of their colleagues.

<span class="mw-page-title-main">RecBCD</span> Family of protein complexes in bacteria

Exodeoxyribonuclease V is an enzyme of E. coli that initiates recombinational repair from potentially lethal double strand breaks in DNA which may result from ionizing radiation, replication errors, endonucleases, oxidative damage, and a host of other factors. The RecBCD enzyme is both a helicase that unwinds, or separates the strands of DNA, and a nuclease that makes single-stranded nicks in DNA. It catalyses exonucleolytic cleavage in either 5′- to 3′- or 3′- to 5′-direction to yield 5′-phosphooligonucleotides.

In molecular biology, endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain. Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically, while many, typically called restriction endonucleases or restriction enzymes, cleave only at very specific nucleotide sequences. Endonucleases differ from exonucleases, which cleave the ends of recognition sequences instead of the middle (endo) portion. Some enzymes known as "exo-endonucleases", however, are not limited to either nuclease function, displaying qualities that are both endo- and exo-like. Evidence suggests that endonuclease activity experiences a lag compared to exonuclease activity.

<span class="mw-page-title-main">Exonuclease</span> Class of enzymes; type of nuclease

Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3′ or the 5′ end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5′ to 3′ exonuclease (Xrn1), which is a dependent decapping protein; 3′ to 5′ exonuclease, an independent protein; and poly(A)-specific 3′ to 5′ exonuclease.

<span class="mw-page-title-main">Exonuclease III</span>

Exonuclease III (ExoIII) is an enzyme that belongs to the exonuclease family. ExoIII catalyzes the stepwise removal of mononucleotides from 3´-hydroxyl termini of double-stranded DNA. A limited number of nucleotides are removed during each binding event, resulting in coordinated progressive deletions within the population of DNA molecules.

UvrABC endonuclease is a multienzyme complex in bacteria involved in DNA repair by nucleotide excision repair, and it is, therefore, sometimes called an excinuclease. This UvrABC repair process, sometimes called the short-patch process, involves the removal of twelve nucleotides where a genetic mutation has occurred followed by a DNA polymerase, replacing these aberrant nucleotides with the correct nucleotides and completing the DNA repair. The subunits for this enzyme are encoded in the uvrA, uvrB, and uvrC genes. This enzyme complex is able to repair many different types of damage, including cyclobutyl dimer formation.

Exodeoxyribonuclease I is an enzyme that catalyses the following chemical reaction:

<span class="mw-page-title-main">DNA adenine methylase</span> Prokaryotic enzyme

DNA adenine methylase, (Dam) (also site-specific DNA-methyltransferase (adenine-specific), EC 2.1.1.72, modification methylase, restriction-modification system) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA. Immediately after DNA synthesis, the daughter strand remains unmethylated for a short time. It is an orphan methyltransferase that is not part of a restriction-modification system and regulates gene expression. This enzyme catalyses the following chemical reaction

Flap endonucleases are a class of nucleolytic enzymes that act as both 5'-3' exonucleases and structure-specific endonucleases on specialised DNA structures that occur during the biological processes of DNA replication, DNA repair, and DNA recombination. Flap endonucleases have been identified in eukaryotes, prokaryotes, archaea, and some viruses. Organisms can have more than one FEN homologue; this redundancy may give an indication of the importance of these enzymes. In prokaryotes, the FEN enzyme is found as an N-terminal domain of DNA polymerase I, but some prokaryotes appear to encode a second homologue.

The enzyme DNA-(apurinic or apyrimidinic site) lyase, also referred to as DNA-(apurinic or apyrimidinic site) 5'-phosphomonoester-lyase or DNA AP lyase catalyzes the cleavage of the C-O-P bond 3' from the apurinic or apyrimidinic site in DNA via β-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. In the 1970s, this class of enzyme was found to repair at apurinic or apyrimidinic DNA sites in E. coli and in mammalian cells. The major active enzyme of this class in bacteria, and specifically, E. coli is endonuclease type III. This enzyme is part of a family of lyases that cleave carbon-oxygen bonds.

<span class="mw-page-title-main">NTHL1</span> Protein-coding gene in the species Homo sapiens

Endonuclease III-like protein 1 is an enzyme that in humans is encoded by the NTHL1 gene.

A nicking enzyme is an enzyme that cuts one strand of a double-stranded DNA or RNA at a specific recognition nucleotide sequences known as a restriction site. Such enzymes hydrolyse (cut) only one strand of the DNA duplex, to produce DNA molecules that are “nicked”, rather than cleaved.

Exodeoxyribonuclease III is an enzyme that catalyses the following reaction

Exodeoxyribonuclease (lambda-induced) is an exonuclease. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Ribonuclease T</span> Class of enzymes

Ribonuclease T is a ribonuclease enzyme involved in the maturation of transfer RNA and ribosomal RNA in bacteria, as well as in DNA repair pathways. It is a member of the DnaQ family of exonucleases and non-processively acts on the 3' end of single-stranded nucleic acids. RNase T is capable of cleaving both DNA and RNA, with extreme sequence specificity discriminating against cytosine at the 3' end of the substrate.

References

  1. 1 2 3 4 Robins P, Pappin DJ, Wood RD, Lindahl T (November 1994). "Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of Escherichia coli DNA polymerase I". The Journal of Biological Chemistry. 269 (46): 28535–28538. doi: 10.1016/s0021-9258(19)61935-6 . PMID   7961795.
  2. Friedberg EC, Goldthwait DA (March 1969). "Endonuclease II of E. coli. I. Isolation and purification". Proceedings of the National Academy of Sciences of the United States of America. 62 (3): 934–940. Bibcode:1969PNAS...62..934F. doi: 10.1073/pnas.62.3.934 . PMC   223688 . PMID   4895219.
  3. Hadi SM, Goldthwait DA (December 1971). "Endonuclease II of Escherichia coli. Degradation of partially depurinated deoxyribonucleic acid". Biochemistry. 10 (26): 4986–4993. doi:10.1021/bi00802a024. PMID   4944066.
  4. Sadowski PD, Hurwitz J (November 1969). "Enzymatic breakage of deoxyribonucleic acid. I. Purification and properties of endonuclease II from T4 phage-infected Escherichia coli". The Journal of Biological Chemistry. 244 (22): 6182–6191. doi: 10.1016/S0021-9258(18)63523-9 . PMID   4310836.
  5. Friedberg EC, Hadi SM, Goldthwait DA (November 1969). "Endonuclease II of Escherichia coli. II. Enzyme properties and studies on the degradation of alkylated and native deoxyribonucleic acid". The Journal of Biological Chemistry. 244 (21): 5879–5889. doi: 10.1016/S0021-9258(18)63556-2 . PMID   4981786.
  6. Kerins SM, Collins R, McCarthy TV (January 2003). "Characterization of an endonuclease IV 3'-5' exonuclease activity". The Journal of Biological Chemistry. 278 (5): 3048–3054. doi: 10.1074/jbc.m210750200 . PMID   12444080.
  7. Hirano N, Ohshima H, Sakashita H, Takahashi H (2007-11-29). "The Ser176 of T4 endonuclease IV is crucial for the restricted and polarized dC-specific cleavage of single-stranded DNA implicated in restriction of dC-containing DNA in host Escherichia coli". Nucleic Acids Research. 35 (20): 6692–6700. doi:10.1093/nar/gkm722. PMC   2175332 . PMID   17913749.
  8. Grondal-Zocchi, G.; Verly, W. G. (1985-01-15). "Deoxyribonuclease IV from rat liver chromatin and the excision of apurinic sites from depurinated DNA". The Biochemical Journal. 225 (2): 535–542. doi:10.1042/bj2250535. ISSN   0264-6021. PMC   1144621 . PMID   3977844.
  9. Lindahl T, Gally JA, Edelman GM (February 1969). "Deoxyribonuclease IV: a new exonuclease from mammalian tissues". Proceedings of the National Academy of Sciences of the United States of America. 62 (2): 597–603. Bibcode:1969PNAS...62..597L. doi: 10.1073/pnas.62.2.597 . PMC   277851 . PMID   5256235.
  10. 1 2 3 Lindahl T, Gally JA, Edelman GM (February 1969). "Deoxyribonuclease IV: a new exonuclease from mammalian tissues". Proceedings of the National Academy of Sciences of the United States of America. 62 (2): 597–603. doi: 10.1073/pnas.62.2.597 . PMC   277851 . PMID   5256235.
  11. Mishra NC (1995). Molecular biology of nucleases. Boca Raton: CRC Press. ISBN   978-0-8493-7658-0. OCLC   31436640.
  12. 1 2 Campbell, Aine M.; Winder, Frank G. (August 1983). "Properties of deoxyribonuclease 4 from Aspergillus nidulans". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 746 (3): 125–132. doi:10.1016/0167-4838(83)90065-1. PMID   6349692.
  13. 1 2 Tsutakawa SE, Lafrance-Vanasse J, Tainer JA (July 2014). "The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once". DNA Repair. 19: 95–107. doi:10.1016/j.dnarep.2014.03.022. PMC   4051888 . PMID   24754999.
  14. 1 2 Lindahl, Tomas (February 1971). "The Action Pattern of Mammalian Deoxyribonuclease IV". European Journal of Biochemistry. 18 (3): 415–421. doi:10.1111/j.1432-1033.1971.tb01258.x. ISSN   0014-2956. PMID   5100828.
  15. Klungland A, Lindahl T (June 1997). "Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1)". The EMBO Journal. 16 (11): 3341–3348. doi:10.1093/emboj/16.11.3341. PMC   1169950 . PMID   9214649.