inositol-1(or 4)-monophosphatase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 3.1.3.25 | ||||||||
CAS no. | 37184-63-7 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
Inositol monophosphatase 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | IMPA1 | ||||||
Alt. symbols | IMP; IMPA | ||||||
NCBI gene | 3612 | ||||||
HGNC | 6050 | ||||||
OMIM | 602064 | ||||||
RefSeq | NP_001138350 | ||||||
UniProt | P29218 | ||||||
Other data | |||||||
EC number | 3.1.3.25 | ||||||
Locus | Chr. 8 q21.1-q21.3 | ||||||
|
Inositol monophosphatase 2 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | IMPA2 | ||||||
NCBI gene | 3613 | ||||||
HGNC | 6051 | ||||||
OMIM | 605922 | ||||||
RefSeq | NP_055029 | ||||||
UniProt | O14732 | ||||||
Other data | |||||||
EC number | 3.1.3.25 | ||||||
Locus | Chr. 18 p11.2 | ||||||
|
Inositol monophosphatase 3 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | IMPAD1 | ||||||
Alt. symbols | IMPA3 | ||||||
NCBI gene | 54928 | ||||||
HGNC | 26019 | ||||||
OMIM | 614010 | ||||||
RefSeq | NP_060283 | ||||||
UniProt | Q9NX62 | ||||||
Other data | |||||||
EC number | 3.1.3.25 | ||||||
Locus | Chr. 8 q12.1 | ||||||
|
The enzyme Inositol phosphate-phosphatase (EC 3.1.3.25) is of the phosphodiesterase family of enzymes. [2] It is involved in the phosphophatidylinositol signaling pathway, which affects a wide array of cell functions, including but not limited to, cell growth, apoptosis, secretion, and information processing. [3] Inhibition of inositol monophosphatase may be key in the action of lithium in treating bipolar disorder, specifically manic depression. [4]
The catalyzed reaction:
This enzyme belongs to the family of hydrolases, specifically those acting on phosphoric monoester bonds. The systematic name is myo-inositol-phosphate phosphohydrolase. Other names in common use include:
The enzyme is a dimer comprising 277 amino acid residues per subunit. Each dimer exists in 5 layers of alternating α-helices and β-sheets, totaling to 9 α-helices and β-sheets per subunit. [5] IMPase has three hydrophilic hollow active sites, each of which bind water and magnesium molecules. [6] These binding sites appear to be conserved in other phosphodiesterases such as fructose 1,6-bisphosphatase (FBPase) and inositol polyphosphate 1-phosphatase. [7]
It was previously reported that the hydrolysis of inositol monophosphate was catalyzed by IMPase through a 2-magnesium ion mechanism. [5] However a recent 1.4 A resolution crystal structure shows 3 magnesium ions coordinating in each active binding site of the 2 dimers, supporting a 3-magnesium ion mechanism. [6] The mechanism for hydrolysis is now thought to proceed as such: the enzyme is activated by a magnesium ion binding to binding site I, containing three water molecules, and stabilized by the negative charges on the carboxylates of Glu70 and Asp90, and the carbonyl of Ile92. [5] Another magnesium ion then cooperatively binds to binding site 2, which has of carboxylates of Asp90, Asp93, Asp220, and three water molecules, one of which is shared by binding site 1. Then, a third magnesium weakly and non-cooperatively to the third binding site, which has 5 water molecules and residue Glu70. After all three magnesium ions have bound, the inositol monophosphatase can bind, the negatively charge phosphate group stabilized by the three positively charged magnesium ions. Finally an activated water molecule acts a nucleophile and hydrolyzes the substrate, giving inositol and inorganic phosphate. [8]
Inositol monophosphatase plays an important role in maintaining intracellular levels of myo-inositol, a molecule that forms the structural basis of several secondary messengers in eukaryotic cells. IMPase dephosphorylates the isomers of inositol monophosphate to produce inositol, mostly in the form of the stereoisomer, myo-inositol. [9] Inositol monophosphatase is able to regulate inositol homeostasis because it lies at the convergence of two pathways that generate inositol: [10]
In this pathway, G-coupled protein receptors and tyrosine kinase receptors are activated, resulting in the activation of phospholipase C, which hydrolyzes phosphatidylinositol biphosphate (PIP2), resulting in a membrane associated product, diacylglycerol, and a water-soluble product, inositol triphosphate. [3] Diacylglycerol acts as a second messenger, activating several protein kinases and produces extended downstream signaling. Inositol triphosphate is also a second messenger which activates receptors on the endoplasmic reticulum to release calcium ion stores into the cytoplasm, [3] [10] [11] creating a complex signaling system that can be involved in modulating fertilization, proliferation, contraction, cell metabolism, vesicle and fluid secretion, and information processing in neuronal cells. [12] Overall, diacylglycerol and inositol triphosphate signaling has implications for neuronal plasticity, impacting hippocampal long term potentiation, stress-induced cognitive impairment, and neuronal growth cone spreading. [11] Furthermore, not only is PIP2 a precursor to several signaling molecules, it can be phosphorylated at the 3’ position to become PIP3, which is involved in cell proliferation, apoptosis and cell movement. [3]
In this pathway, IMPase is the common, final step in recycling IP3 to produce PIP2. IMPase does this by dephosphorylating inositol monophosphate to produce inorganic phosphate and myo-inositol, the precursor to PIP2. Because of IMPase's crucial role in this signaling pathway, it is a potential drug target for inhibition and modulation. [11]
There are at least 2 known steps in the de novo synthesis of myo-inositol from glucose 6-phosphate. In the first step, glucose 6-phosphate is converted to D-inositol 1 monophosphate by the enzyme glucose 6 phosphate cyclase. Inositol monophosphatase catalyzes the final step in which D-inositol 1 monophosphate is dephosphorylated to form myo-inositol. [13]
Inositol monophosphatase has historically been believed to be a direct target of lithium, the primary treatment for bipolar disorder. [4] It is thought that lithium acts according to the inositol depletion hypothesis: lithium produces its therapeutic effect by inhibiting IMPase and therefore decreasing levels of myo-inositol. [4] [14] Scientific support for this hypothesis exists but is limited; the complete role of lithium and inositol monophosphatase in treating bipolar disorder or reducing myo-inositol levels is not well understood.
In support of the inositol depletion hypothesis, researchers have shown that lithium binds uncompetitively to purified bovine inositol monophosphatase at the site of one of the magnesium ions. [15] Rodents administered lithium showed a decrease in inositol levels, in line with the hypothesis. [16] Valproate, another mood-stabilizing drug given to bipolar disorder patients, has also been shown to mimic the effects of lithium on myo-inositol. [17]
However, some clinical studies have found that bipolar disorder patients that had been administered lithium showed lower myo-inositol levels, while others found no effect on myo-inositol levels. [18] [19] [20] Furthermore, lithium also binds to inositol polyphosphate 1-phosphatase (IPP), an enzyme also present in the phosphoinositide pathway, and could lower inositol levels through this mechanism [21] More research is required to fully explain the role that lithium and IMPase play in bipolar disorder patients. [4] [14]
Despite the fact that lithium is effective in treating bipolar disorder, it is an extremely toxic metal and the toxic dose is only marginally greater than the therapeutic dose. [2] A novel inhibitor of inositol monophosphatase that is less toxic could be a more desirable treatment for bipolar disorder. [22] Such an inhibitor would need to cross the blood–brain barrier in order to reach the inositol monophosphatase in neurons. [23]
Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, by phospholipase C (PLC). Together with diacylglycerol (DAG), IP3 is a second messenger molecule used in signal transduction in biological cells. While DAG stays inside the membrane, IP3 is soluble and diffuses through the cell, where it binds to its receptor, which is a calcium channel located in the endoplasmic reticulum. When IP3 binds its receptor, calcium is released into the cytosol, thereby activating various calcium regulated intracellular signals.
The enzyme fructose bisphosphatase (EC 3.1.3.11; systematic name D-fructose-1,6-bisphosphate 1-phosphohydrolase) catalyses the conversion of fructose-1,6-bisphosphate to fructose 6-phosphate in gluconeogenesis and the Calvin cycle, which are both anabolic pathways:
In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol. Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. Phosphatase enzymes are essential to many biological functions, because phosphorylation and dephosphorylation serve diverse roles in cellular regulation and signaling. Whereas phosphatases remove phosphate groups from molecules, kinases catalyze the transfer of phosphate groups to molecules from ATP. Together, kinases and phosphatases direct a form of post-translational modification that is essential to the cell's regulatory network.
Inositol, primarily the isomer myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation. Concerning regulation of osmosis, in most mammalian cells the intracellular concentrations of myo-inositol are 5 to 500 times greater than the extracellular concentrations.
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.
Phosphatidylinositol or inositol phospholipid is a biomolecule. It was initially called "inosite" when it was discovered by Léon Maquenne and Johann Joseph von Scherer in the late 19th century. It was discovered in bacteria but later also found in eukaryotes, and was found to be a signaling molecule.
Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. Second messengers trigger physiological changes at cellular level such as proliferation, differentiation, migration, survival, apoptosis and depolarization.
Inositol phosphates are a group of mono- to hexaphosphorylated inositols. Each form of inositol phosphate is distinguished by the number and position of the phosphate group on the inositol ring.
Phosphoinositide phospholipase C is a family of eukaryotic intracellular enzymes that play an important role in signal transduction processes. These enzymes belong to a larger superfamily of Phospholipase C. Other families of phospholipase C enzymes have been identified in bacteria and trypanosomes. Phospholipases C are phosphodiesterases.
Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins. PIP2 also forms lipid clusters that sort proteins.
Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.
Inositol oxygenase, also commonly referred to as myo-inositol oxygenase (MIOX), is a non-heme di-iron enzyme that oxidizes myo-inositol to glucuronic acid. The enzyme employs a unique four-electron transfer at its Fe(II)/Fe(III) coordination sites and the reaction proceeds through the direct binding of myo-inositol followed by attack of the iron center by diatomic oxygen. This enzyme is part of the only known pathway for the catabolism of inositol in humans and is expressed primarily in the kidneys. Recent medical research regarding MIOX has focused on understanding its role in metabolic and kidney diseases such as diabetes, obesity and acute kidney injury. Industrially-focused engineering efforts are centered on improving MIOX activity in order to produce glucaric acid in heterologous hosts.
In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another neuron or to the target effector cell.
Glucose-1,6-bisphosphate synthase is a type of enzyme called a phosphotransferase and is involved in mammalian starch and sucrose metabolism. It catalyzes the transfer of a phosphate group from 1,3-bisphosphoglycerate to glucose-1-phosphate, yielding 3-phosphoglycerate and glucose-1,6-bisphosphate.
In enzymology, an inositol-3-phosphate synthase is an enzyme that catalyzes the chemical reaction
Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.
Inositol monophosphatase 1 is an enzyme that in humans is encoded by the IMPA1 gene.
Inositol monophosphatase 2 is a 32 kDa enzyme that in humans is encoded by the IMPA2 gene. IMPA2 dephosphorylates myo-inositol monophosphate to myo-inositol.
Certain lithium compounds, also known as lithium salts, are used as psychiatric medication, primarily for bipolar disorder and for major depressive disorder. In lower doses, other salts such as lithium citrate are known as nutritional lithium and have occasionally been used to treat ADHD. Lithium is taken orally.
β-propeller phytases (BPPs) are a group of enzymes (i.e. protein superfamily) with a round beta-propeller structure. BPPs are phytases, which means that they are able to remove (hydrolyze) phosphate groups from phytic acid and its phytate salts. Hydrolysis happens stepwise and usually ends in myo-inositol triphosphate product which has three phosphate groups still bound to it. The actual substrate of BPPs is calcium phytate and in order to hydrolyze it, BPPs must have Ca2+ ions bound to themselves. BPPs are the most widely found phytase superfamily in the environment and they are thought to have a major role in phytate-phosphorus cycling in soil and water. As their alternative name alkaline phytase suggests, BPPs work best in basic (or neutral) environment. Their pH optima is 6–9, which is unique among the phytases.