Inositol-phosphate phosphatase

Last updated
inositol-1(or 4)-monophosphatase
2czi.jpg
Inositol monophosphatase 2, dimer, Human
Identifiers
EC no. 3.1.3.25
CAS no. 37184-63-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Inositol monophosphatase 1
Identifiers
Symbol IMPA1
Alt. symbolsIMP; IMPA
NCBI gene 3612
HGNC 6050
OMIM 602064
RefSeq NP_001138350
UniProt P29218
Other data
EC number 3.1.3.25
Locus Chr. 8 q21.1-q21.3
Search for
Structures Swiss-model
Domains InterPro
Inositol monophosphatase 2
Protein IMPA2 PDB 2czh.png
X-ray crystal structure of inositol monophosphatase 2 [1]
Identifiers
Symbol IMPA2
NCBI gene 3613
HGNC 6051
OMIM 605922
RefSeq NP_055029
UniProt O14732
Other data
EC number 3.1.3.25
Locus Chr. 18 p11.2
Search for
Structures Swiss-model
Domains InterPro
Inositol monophosphatase 3
Identifiers
Symbol IMPAD1
Alt. symbolsIMPA3
NCBI gene 54928
HGNC 26019
OMIM 614010
RefSeq NP_060283
UniProt Q9NX62
Other data
EC number 3.1.3.25
Locus Chr. 8 q12.1
Search for
Structures Swiss-model
Domains InterPro

The enzyme Inositol phosphate-phosphatase (EC 3.1.3.25) is of the phosphodiesterase family of enzymes. [2] It is involved in the phosphophatidylinositol signaling pathway, which affects a wide array of cell functions, including but not limited to, cell growth, apoptosis, secretion, and information processing. [3] Inhibition of inositol monophosphatase may be key in the action of lithium in treating bipolar disorder, specifically manic depression. [4]

Contents

The catalyzed reaction:

myo-inositol phosphate + H2O myo-inositol + phosphate

Nomenclature

This enzyme belongs to the family of hydrolases, specifically those acting on phosphoric monoester bonds. The systematic name is myo-inositol-phosphate phosphohydrolase. Other names in common use include:

Structure

The enzyme is a dimer comprising 277 amino acid residues per subunit. Each dimer exists in 5 layers of alternating α-helices and β-sheets, totaling to 9 α-helices and β-sheets per subunit. [5] IMPase has three hydrophilic hollow active sites, each of which bind water and magnesium molecules. [6] These binding sites appear to be conserved in other phosphodiesterases such as fructose 1,6-bisphosphatase (FBPase) and inositol polyphosphate 1-phosphatase. [7]

Catalytic mechanism

It was previously reported that the hydrolysis of inositol monophosphate was catalyzed by IMPase through a 2-magnesium ion mechanism. [5] However a recent 1.4 A resolution crystal structure shows 3 magnesium ions coordinating in each active binding site of the 2 dimers, supporting a 3-magnesium ion mechanism. [6] The mechanism for hydrolysis is now thought to proceed as such: the enzyme is activated by a magnesium ion binding to binding site I, containing three water molecules, and stabilized by the negative charges on the carboxylates of Glu70 and Asp90, and the carbonyl of Ile92. [5] Another magnesium ion then cooperatively binds to binding site 2, which has of carboxylates of Asp90, Asp93, Asp220, and three water molecules, one of which is shared by binding site 1. Then, a third magnesium weakly and non-cooperatively to the third binding site, which has 5 water molecules and residue Glu70. After all three magnesium ions have bound, the inositol monophosphatase can bind, the negatively charge phosphate group stabilized by the three positively charged magnesium ions. Finally an activated water molecule acts a nucleophile and hydrolyzes the substrate, giving inositol and inorganic phosphate. [8]

Function

Inositol monophosphatase plays an important role in maintaining intracellular levels of myo-inositol, a molecule that forms the structural basis of several secondary messengers in eukaryotic cells. IMPase dephosphorylates the isomers of inositol monophosphate to produce inositol, mostly in the form of the stereoisomer, myo-inositol. [9] Inositol monophosphatase is able to regulate inositol homeostasis because it lies at the convergence of two pathways that generate inositol: [10]

Inositol monophosphatase in the phosphatidylinositol signaling pathway

In this pathway, G-coupled protein receptors and tyrosine kinase receptors are activated, resulting in the activation of phospholipase C, which hydrolyzes phosphatidylinositol biphosphate (PIP2), resulting in a membrane associated product, diacylglycerol, and a water-soluble product, inositol triphosphate. [3] Diacylglycerol acts as a second messenger, activating several protein kinases and produces extended downstream signaling. Inositol triphosphate is also a second messenger which activates receptors on the endoplasmic reticulum to release calcium ion stores into the cytoplasm, [3] [10] [11] creating a complex signaling system that can be involved in modulating fertilization, proliferation, contraction, cell metabolism, vesicle and fluid secretion, and information processing in neuronal cells. [12] Overall, diacylglycerol and inositol triphosphate signaling has implications for neuronal plasticity, impacting hippocampal long term potentiation, stress-induced cognitive impairment, and neuronal growth cone spreading. [11] Furthermore, not only is PIP2 a precursor to several signaling molecules, it can be phosphorylated at the 3’ position to become PIP3, which is involved in cell proliferation, apoptosis and cell movement. [3]

In this pathway, IMPase is the common, final step in recycling IP3 to produce PIP2. IMPase does this by dephosphorylating inositol monophosphate to produce inorganic phosphate and myo-inositol, the precursor to PIP2. Because of IMPase's crucial role in this signaling pathway, it is a potential drug target for inhibition and modulation. [11]

Inositol monophosphatase in the de novo synthesis of myo-inositol

There are at least 2 known steps in the de novo synthesis of myo-inositol from glucose 6-phosphate. In the first step, glucose 6-phosphate is converted to D-inositol 1 monophosphate by the enzyme glucose 6 phosphate cyclase. Inositol monophosphatase catalyzes the final step in which D-inositol 1 monophosphate is dephosphorylated to form myo-inositol. [13]

Clinical significance

Inositol monophosphatase has historically been believed to be a direct target of lithium, the primary treatment for bipolar disorder. [4] It is thought that lithium acts according to the inositol depletion hypothesis: lithium produces its therapeutic effect by inhibiting IMPase and therefore decreasing levels of myo-inositol. [4] [14] Scientific support for this hypothesis exists but is limited; the complete role of lithium and inositol monophosphatase in treating bipolar disorder or reducing myo-inositol levels is not well understood.

In support of the inositol depletion hypothesis, researchers have shown that lithium binds uncompetitively to purified bovine inositol monophosphatase at the site of one of the magnesium ions. [15] Rodents administered lithium showed a decrease in inositol levels, in line with the hypothesis. [16] Valproate, another mood-stabilizing drug given to bipolar disorder patients, has also been shown to mimic the effects of lithium on myo-inositol. [17]

However, some clinical studies have found that bipolar disorder patients that had been administered lithium showed lower myo-inositol levels, while others found no effect on myo-inositol levels. [18] [19] [20] Furthermore, lithium also binds to inositol polyphosphate 1-phosphatase (IPP), an enzyme also present in the phosphoinositide pathway, and could lower inositol levels through this mechanism [21] More research is required to fully explain the role that lithium and IMPase play in bipolar disorder patients. [4] [14]

Despite the fact that lithium is effective in treating bipolar disorder, it is an extremely toxic metal and the toxic dose is only marginally greater than the therapeutic dose. [2] A novel inhibitor of inositol monophosphatase that is less toxic could be a more desirable treatment for bipolar disorder. [22] Such an inhibitor would need to cross the blood–brain barrier in order to reach the inositol monophosphatase in neurons. [23]

Related Research Articles

Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, by phospholipase C (PLC). Together with diacylglycerol (DAG), IP3 is a second messenger molecule used in signal transduction in biological cells. While DAG stays inside the membrane, IP3 is soluble and diffuses through the cell, where it binds to its receptor, which is a calcium channel located in the endoplasmic reticulum. When IP3 binds its receptor, calcium is released into the cytosol, thereby activating various calcium regulated intracellular signals.

<span class="mw-page-title-main">Fructose 1,6-bisphosphatase</span> Class of enzymes

The enzyme fructose bisphosphatase (EC 3.1.3.11; systematic name D-fructose-1,6-bisphosphate 1-phosphohydrolase) catalyses the conversion of fructose-1,6-bisphosphate to fructose 6-phosphate in gluconeogenesis and the Calvin cycle, which are both anabolic pathways:

<span class="mw-page-title-main">Phosphatase</span> Enzyme which catalyzes the removal of a phosphate group from a molecule

In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol. Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. Phosphatase enzymes are essential to many biological functions, because phosphorylation and dephosphorylation serve diverse roles in cellular regulation and signaling. Whereas phosphatases remove phosphate groups from molecules, kinases catalyze the transfer of phosphate groups to molecules from ATP. Together, kinases and phosphatases direct a form of post-translational modification that is essential to the cell's regulatory network.

<span class="mw-page-title-main">Inositol</span> Carbocyclic sugar

Inositol, primarily the isomer myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation. Concerning regulation of osmosis, in most mammalian cells the intracellular concentrations of myo-inositol are 5 to 500 times greater than the extracellular concentrations.

<span class="mw-page-title-main">GSK-3</span> Class of enzymes

Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen synthase (GS), GSK-3 has since been identified as a protein kinase for over 100 different proteins in a variety of different pathways. In mammals, including humans, GSK-3 exists in two isozymes encoded by two homologous genes GSK-3α (GSK3A) and GSK-3β (GSK3B). GSK-3 has been the subject of much research since it has been implicated in a number of diseases, including type 2 diabetes, Alzheimer's disease, inflammation, cancer, addiction and bipolar disorder.

<span class="mw-page-title-main">Phosphatidylinositol</span> Signaling molecule

Phosphatidylinositol or inositol phospholipid is a biomolecule. It was initially called "inosite" when it was discovered by Léon Maquenne and Johann Joseph von Scherer in the late 19th century. It was discovered in bacteria but later also found in eukaryotes, and was found to be a signaling molecule.

Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. Second messengers trigger physiological changes at cellular level such as proliferation, differentiation, migration, survival, apoptosis and depolarization.

<span class="mw-page-title-main">Inositol phosphate</span>

Inositol phosphates are a group of mono- to hexaphosphorylated inositols. Each form of inositol phosphate is distinguished by the number and position of the phosphate group on the inositol ring.

<span class="mw-page-title-main">Phosphoinositide phospholipase C</span>

Phosphoinositide phospholipase C is a family of eukaryotic intracellular enzymes that play an important role in signal transduction processes. These enzymes belong to a larger superfamily of Phospholipase C. Other families of phospholipase C enzymes have been identified in bacteria and trypanosomes. Phospholipases C are phosphodiesterases.

<span class="mw-page-title-main">Phosphatidylinositol 4,5-bisphosphate</span> Chemical compound

Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins. PIP2 also forms lipid clusters that sort proteins.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

<span class="mw-page-title-main">Inositol oxygenase</span> Protein-coding gene in the species Homo sapiens

Inositol oxygenase, also commonly referred to as myo-inositol oxygenase (MIOX), is a non-heme di-iron enzyme that oxidizes myo-inositol to glucuronic acid. The enzyme employs a unique four-electron transfer at its Fe(II)/Fe(III) coordination sites and the reaction proceeds through the direct binding of myo-inositol followed by attack of the iron center by diatomic oxygen. This enzyme is part of the only known pathway for the catabolism of inositol in humans and is expressed primarily in the kidneys. Recent medical research regarding MIOX has focused on understanding its role in metabolic and kidney diseases such as diabetes, obesity and acute kidney injury. Industrially-focused engineering efforts are centered on improving MIOX activity in order to produce glucaric acid in heterologous hosts.

<span class="mw-page-title-main">Synapse</span> Structure connecting neurons in the nervous system

In the nervous system, a synapse is a structure that permits a neuron to pass an electrical or chemical signal to another neuron or to the target effector cell.

Glucose-1,6-bisphosphate synthase is a type of enzyme called a phosphotransferase and is involved in mammalian starch and sucrose metabolism. It catalyzes the transfer of a phosphate group from 1,3-bisphosphoglycerate to glucose-1-phosphate, yielding 3-phosphoglycerate and glucose-1,6-bisphosphate.

<span class="mw-page-title-main">Inositol-3-phosphate synthase</span>

In enzymology, an inositol-3-phosphate synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Inositol-trisphosphate 3-kinase</span> Class of enzymes

Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.

<span class="mw-page-title-main">Inositol monophosphatase 1</span> Protein-coding gene in the species Homo sapiens

Inositol monophosphatase 1 is an enzyme that in humans is encoded by the IMPA1 gene.

<span class="mw-page-title-main">Inositol monophosphatase 2</span> Protein-coding gene in the species Homo sapiens

Inositol monophosphatase 2 is a 32 kDa enzyme that in humans is encoded by the IMPA2 gene. IMPA2 dephosphorylates myo-inositol monophosphate to myo-inositol.

<span class="mw-page-title-main">Lithium (medication)</span> Mood-stabilizing psychiatric medication

Certain lithium compounds, also known as lithium salts, are used as psychiatric medication, primarily for bipolar disorder and for major depressive disorder. In lower doses, other salts such as lithium citrate are known as nutritional lithium and have occasionally been used to treat ADHD. Lithium is taken orally.

<span class="mw-page-title-main">Beta-propeller phytase</span> Group of enzymes

β-propeller phytases (BPPs) are a group of enzymes (i.e. protein superfamily) with a round beta-propeller structure. BPPs are phytases, which means that they are able to remove (hydrolyze) phosphate groups from phytic acid and its phytate salts. Hydrolysis happens stepwise and usually ends in myo-inositol triphosphate product which has three phosphate groups still bound to it. The actual substrate of BPPs is calcium phytate and in order to hydrolyze it, BPPs must have Ca2+ ions bound to themselves. BPPs are the most widely found phytase superfamily in the environment and they are thought to have a major role in phytate-phosphorus cycling in soil and water. As their alternative name alkaline phytase suggests, BPPs work best in basic (or neutral) environment. Their pH optima is 6–9, which is unique among the phytases.

References

  1. Arai R, Ito K, Ohnishi T, Ohba H, Akasaka R, Bessho Y, et al. (May 2007). "Crystal structure of human myo-inositol monophosphatase 2, the product of the putative susceptibility gene for bipolar disorder, schizophrenia, and febrile seizures". Proteins. 67 (3): 732–42. doi:10.1002/prot.21299. PMID   17340635. S2CID   46602105.
  2. 1 2 Can A, Schulze TG, Gould TD (August 2014). "Molecular actions and clinical pharmacogenetics of lithium therapy". Pharmacology, Biochemistry, and Behavior. 123: 3–16. doi:10.1016/j.pbb.2014.02.004. PMC   4220538 . PMID   24534415.
  3. 1 2 3 4 [ citation needed ]
  4. 1 2 3 4 Harwood AJ (January 2005). "Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited". Molecular Psychiatry. 10 (1): 117–26. doi: 10.1038/sj.mp.4001618 . PMID   15558078. S2CID   20026448.
  5. 1 2 3 Lu S, Huang W, Li X, Huang Z, Liu X, Chen Y, et al. (September 2012). "Insights into the role of magnesium triad in myo-inositol monophosphatase: metal mechanism, substrate binding, and lithium therapy". Journal of Chemical Information and Modeling. 52 (9): 2398–409. doi:10.1021/ci300172r. PMID   22889135.
  6. 1 2 Gill R, Mohammed F, Badyal R, Coates L, Erskine P, Thompson D, et al. (May 2005). "High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy". Acta Crystallographica. Section D, Biological Crystallography. 61 (Pt 5): 545–55. Bibcode:2005AcCrD..61..545G. doi: 10.1107/S0907444905004038 . PMID   15858264.
  7. Bone R, Springer JP, Atack JR (November 1992). "Structure of inositol monophosphatase, the putative target of lithium therapy". Proceedings of the National Academy of Sciences of the United States of America. 89 (21): 10031–5. Bibcode:1992PNAS...8910031B. doi: 10.1073/pnas.89.21.10031 . PMC   50271 . PMID   1332026.
  8. Singh P. "Myo-inositol Monophosphatase, the Target of Lithium Therapy". Archived from the original on 2013-06-04. Retrieved 2020-01-23.
  9. Chung, Chang (1996). "A divergent synthesis of regio-isomers of myo-inositol monophosphate". Korean Journal of Med. Chem. 6: 162–165.
  10. 1 2 Berridge MJ, Downes CP, Hanley MR (November 1989). "Neural and developmental actions of lithium: a unifying hypothesis". Cell. 59 (3): 411–9. doi:10.1016/0092-8674(89)90026-3. PMID   2553271. S2CID   41816045.
  11. 1 2 3 Schloesser RJ, Huang J, Klein PS, Manji HK (January 2008). "Cellular plasticity cascades in the pathophysiology and treatment of bipolar disorder". Neuropsychopharmacology. 33 (1): 110–33. doi: 10.1038/sj.npp.1301575 . PMID   17912251. S2CID   2024963.
  12. Berridge MJ (June 2009). "Inositol trisphosphate and calcium signalling mechanisms". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1793 (6): 933–40. doi: 10.1016/j.bbamcr.2008.10.005 . PMID   19010359.
  13. Chen IW, Charalampous CF (May 1966). "Biochemical studies on inositol. IX. D-Inositol 1-phosphate as intermediate in the biosynthesis of inositol from glucose 6-phosphate, and characteristics of two reactions in this biosynthesis". The Journal of Biological Chemistry. 241 (10): 2194–9. doi: 10.1016/S0021-9258(18)96606-8 . PMID   4287852.
  14. 1 2 Brown KM, Tracy DK (June 2013). "Lithium: the pharmacodynamic actions of the amazing ion". Therapeutic Advances in Psychopharmacology. 3 (3): 163–76. doi:10.1177/2045125312471963. PMC   3805456 . PMID   24167688.
  15. Saudek V, Vincendon P, Do QT, Atkinson RA, Sklenar V, Pelton PD, et al. (August 1996). "7Li nuclear-magnetic-resonance study of lithium binding to myo-inositolmonophosphatase". European Journal of Biochemistry. 240 (1): 288–91. doi:10.1111/j.1432-1033.1996.0288h.x. PMID   8925839.
  16. Allison JH, Stewart MA (October 1971). "Reduced brain inositol in lithium-treated rats". Nature. 233 (43): 267–8. doi:10.1038/newbio233267a0. PMID   5288124.
  17. O'Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH (October 2000). "Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain". Brain Research. 880 (1–2): 84–91. doi:10.1016/s0006-8993(00)02797-9. PMID   11032992. S2CID   8823582.
  18. Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua J, et al. (December 1999). "Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness". The American Journal of Psychiatry. 156 (12): 1902–8. doi:10.1176/ajp.156.12.1902. PMID   10588403. S2CID   5650139.
  19. Patel NC, Cecil KM, Strakowski SM, Adler CM, DelBello MP (December 2008). "Neurochemical alterations in adolescent bipolar depression: a proton magnetic resonance spectroscopy pilot study of the prefrontal cortex". Journal of Child and Adolescent Psychopharmacology. 18 (6): 623–7. doi:10.1089/cap.2007.151. PMC   2935834 . PMID   19108667.
  20. Silverstone PH, McGrath BM (2009). "Lithium and valproate and their possible effects on themyo-inositol second messenger system in healthy volunteers and bipolar patients". International Review of Psychiatry. 21 (4): 414–23. doi:10.1080/09540260902962214. PMID   20374155. S2CID   205645556.
  21. Inhorn RC, Majerus PW (October 1988). "Properties of inositol polyphosphate 1-phosphatase". The Journal of Biological Chemistry. 263 (28): 14559–65. doi: 10.1016/S0021-9258(18)68256-0 . PMID   2844776.
  22. Atack J (1997). "Inositol Monophosphatase Inhibitors— Lithium Mimetics?". Medicinal Research Reviews. 17 (2): 215–224. doi:10.1002/(sici)1098-1128(199703)17:2<215::aid-med3>3.0.co;2-2. PMID   9057165. S2CID   27534316.
  23. Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon EC, et al. (2013). "A safe lithium mimetic for bipolar disorder". Nature Communications. 4: 1332. Bibcode:2013NatCo...4.1332S. doi:10.1038/ncomms2320. PMC   3605789 . PMID   23299882.

Further reading